The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262836 {3,5}-primes (defined in Comments). 2
2, 3, 5, 7, 17, 29, 31, 37, 41, 67, 79, 97, 101, 109, 139, 149, 151, 229, 269, 271, 311, 367, 457, 491, 701, 797, 829, 857, 911, 929, 977, 1039, 1129, 1181, 1231, 1381, 1429, 1481, 1637, 1759, 1861, 1949, 1951, 2011, 2281, 2297, 2467, 2521, 2557, 2659, 2671 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Let S = {b(1), b(2), ..., b(k)}, where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p an S-prime if the digits of p in base b(i) spell a prime in each of the bases b(j) in S, for i = 1..k. Equivalently, p is an S-prime if p is a strong-V prime (defined at A262729) for every permutation of the vector V = (b(1), b(2), ..., b(k)).
LINKS
MATHEMATICA
{b1, b2} = {3, 5};
u = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &]; (* A231474 *)
v = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &]; (* A262835 *)
w = Intersection[u, v]; (* A262836 *)
(* Peter J. C. Moses, Sep 27 2015 *)
CROSSREFS
Sequence in context: A248344 A060212 A107439 * A356475 A178382 A360591
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Nov 05 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 14:12 EDT 2024. Contains 373430 sequences. (Running on oeis4.)