login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A262838
{3,7}-primes (defined in Comments).
2
2, 3, 23, 47, 53, 61, 67, 71, 89, 127, 137, 191, 397, 443, 701, 1031, 1117, 1223, 1499, 1549, 1579, 1621, 1699, 1933, 1951, 2129, 2207, 2311, 2381, 2473, 2521, 2671, 2731, 2753, 2833, 3011, 3019, 3061, 3967, 4051, 4093, 4127, 4229, 4397, 4457, 4943, 5023
OFFSET
1,1
COMMENTS
Let S = {b(1), b(2), ..., b(k)}, where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p an S-prime if the digits of p in base b(i) spell a prime in each of the bases b(j) in S, for i = 1..k. Equivalently, p is an S-prime if p is a strong-V prime (defined at A262729) for every permutation of the vector V = (b(1), b(2), ..., b(k)).
LINKS
MATHEMATICA
{b1, b2} = {3, 7};
u = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &]; (* A231477 *)
v = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &]; (* A262837 *)
w = Intersection[u, v]; (* A262838 *)
(* Peter J. C. Moses, Sep 27 2015 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Nov 09 2015
STATUS
approved