

A231477


Primes whose base3 representation is also the base7 representation of a prime.


3



2, 3, 23, 41, 47, 53, 61, 67, 71, 89, 113, 127, 131, 137, 191, 193, 223, 251, 269, 283, 293, 311, 353, 397, 409, 421, 443, 463, 491, 503, 509, 541, 569, 601, 613, 701, 773, 787, 983, 1013, 1031, 1091, 1117, 1213, 1223, 1429, 1499, 1543, 1549, 1579, 1619, 1621, 1697, 1699, 1733, 1873, 1933, 1949, 1951, 1973
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This sequence is part of a two dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720  A065727, follow the same idea with one base equal to 10.


LINKS

Giovanni Resta, Table of n, a(n) for n = 1..10000
M. F. Hasler, Primes whose base c expansion is also the base b expansion of a prime


EXAMPLE

23 = 212_3 and 212_7 = 107 are both prime, so 23 is a term.


MATHEMATICA

Select[Prime@Range@500, PrimeQ@FromDigits[IntegerDigits[#, 3], 7] &] (* Giovanni Resta, Sep 12 2019 *)


PROG

(PARI) is(p, b=7, c=3)=isprime(vector(#d=digits(p, c), i, b^(#di))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.


CROSSREFS

Cf. A235470, A235265, A235266, A152079, A235461  A235482, A065720 ⊂ A036952, A065721  A065727, A235394, A235395, A089971 ⊂ A020449, A089981, A090707  A091924. See the LINK for further crossreferences.
Sequence in context: A176892 A109615 A101001 * A215325 A215353 A215305
Adjacent sequences: A231474 A231475 A231476 * A231478 A231479 A231480


KEYWORD

nonn,base


AUTHOR

M. F. Hasler, Jan 12 2014


STATUS

approved



