login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A109615
Primes of the form floor((Pi/2)^n).
1
2, 3, 23, 37, 1373, 3389, 8363, 115459401415242179, 45851925215547567394556916118490828192232481476091362012033249370219, 1299908856087615767823951491725300134515972513464867209212961415385730635249
OFFSET
1,1
COMMENTS
The given terms of the sequence correspond to n=2, 3, 7, 8, 16, 18, 20 respectively. There are no other terms for n=21..100000. - Emeric Deutsch, Aug 27 2007
LINKS
EXAMPLE
A014214(20) = floor((Pi/2)^20) = floor(8363.6825...) = 8363 and 8363 = A000040(1047), therefore 8363 is a term.
MAPLE
a:=proc(n) if isprime(floor(((1/2)*Pi)^n))=true then floor(((1/2)*Pi)^n) else end if end proc: seq(a(n), n=1..100); # Emeric Deutsch, Aug 27 2007
MATHEMATICA
lst={}; Do[If[PrimeQ[p=Floor[(Pi/2)^n]], AppendTo[lst, p]], {n, 600}
CROSSREFS
Sequence in context: A213971 A024773 A176892 * A101001 A231477 A215325
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 01 2005
EXTENSIONS
a(8)-a(10) from Vincenzo Librandi, Dec 09 2011
STATUS
approved