|
|
A235461
|
|
Primes whose base-4 representation also is the base 2-representation of a prime.
|
|
64
|
|
|
5, 17, 257, 277, 337, 1093, 1109, 1297, 1361, 4357, 5189, 16453, 16657, 16661, 17489, 17669, 17681, 17749, 21521, 21569, 21589, 65537, 65557, 65617, 65809, 66821, 70657, 70981, 70997, 81937, 82241, 83221, 83269, 86017, 86357, 87317, 263429, 263489, 267541, 278549
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This sequence is part of the two-dimensional array of sequences based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.
When the smaller base is b=2 such that only digits 0 and 1 are allowed, these are primes that are the sum of distinct powers of the larger base, here c=4, thus a subsequence of A077718 and therefore also of A000695, the Moser-de Bruijn sequence.
|
|
LINKS
|
|
|
EXAMPLE
|
5 = 11_4 and 11_2 = 3 are both prime, so 5 is a term.
17 = 101_4 and 101_2 = 5 are both prime, so 17 is a term.
|
|
PROG
|
(PARI) is(p, b=2, c=4)=vecmax(d=digits(p, c))<b&&isprime(vector(#d, i, b^(#d-i))*d~)&&isprime(p)
(Python)
from itertools import islice
from sympy import nextprime, isprime
def A235461_gen(): # generator of terms
p = 1
while (p:=nextprime(p)):
if isprime(m:=int(bin(p)[2:], 4)):
yield m
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|