login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191500
E.g.f. sqrt(1+arctan(2*x))
0
1, 1, -1, -5, 17, 249, -1489, -27453, 237537, 6037041, -68649441, -2107439157, 29789919345, 1092524775081, -18492402857265, -781266357571053, 15425010795541185, 739391174869277025, -16695627953904545985, -893468264544135234405, 22725280358984904476625
OFFSET
0,4
FORMULA
a(n)=2*n!*sum(k=0..(n-1)/2, ((-1)^(n+k+1)*binomial(2*n-4*k-2,n-2*k-1)*(n-2*k-1)!*(sum(i=0..2*k, (2^(i+4*k-n)*stirling1(i+n-2*k,n-2*k)*binomial(n-1,i+n-2*k-1))/(i+n-2*k)!)))), n>0, a(0)=1.
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Sqrt[1+ArcTan[2x]], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Dec 20 2021 *)
PROG
(Maxima)
a(n):=2*n!*sum(((-1)^(n+k+1)*binomial(2*n-4*k-2, n-2*k-1)*(n-2*k-1)!*(sum((2^(i+4*k-n)*stirling1(i+n-2*k, n-2*k)*binomial(n-1, i+n-2*k-1))/(i+n-2*k)!, i, 0, 2*k))), k, 0, (n-1)/2);
CROSSREFS
Sequence in context: A086362 A195570 A281504 * A089894 A077718 A235461
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 03 2011
STATUS
approved