|
|
A191499
|
|
E.g.f. sqrt(1+tan(2*x)).
|
|
1
|
|
|
1, 1, -1, 11, -47, 601, -5521, 86771, -1296287, 25482481, -527699041, 12800059931, -335639304527, 9794548687561, -308817517422961, 10573293809103491, -388317397661640767, 15275057087004591841, -639584224876056953281, 28426125263460829489451, -1335823888802587475761007
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 0..390
|
|
FORMULA
|
a(n) = Sum_{m=0,..,(n-1)/2} ( binomial(2*n-4*m-2,n-2*m-1)*Sum_{j=0,..,2*m} ( binomial(j+n-2*m-1,n-2*m-1)*(j+n-2*m)!*2^(6*m-n-j+1)*(-1)^(m+n+j+1)*stirling2(n,j+n-2*m)))/(n-2*m) ) ), n>0, a(0)=1.
|
|
MAPLE
|
S:= series(sqrt(1+tan(2*x)), x, 31):
seq(coeff(S, x, j)*j!, j=0..30); # Robert Israel, Feb 28 2017
|
|
MATHEMATICA
|
With[{nn = 50}, CoefficientList[Series[Sqrt[1 + Tan[2*x]], {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Feb 28 2017 *)
|
|
PROG
|
(Maxima)
a(n):=sum((binomial(2*n-4*m-2, n-2*m-1)*sum(binomial(j+n-2*m-1, n-2*m-1)*(j+n-2*m)!*2^(6*m-n-j+1)*(-1)^(m+n+j+1)*stirling2(n, j+n-2*m), j, 0, 2*m))/(n-2*m), m, 0, (n-1)/2);
(PARI) x='x + O('x^50); Vec(serlaplace(sqrt(1 + tan(2*x)))) \\ G. C. Greubel, Feb 28 2017
|
|
CROSSREFS
|
Sequence in context: A354590 A067355 A138362 * A072372 A230982 A024530
Adjacent sequences: A191496 A191497 A191498 * A191500 A191501 A191502
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Vladimir Kruchinin, Jun 03 2011
|
|
STATUS
|
approved
|
|
|
|