login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191499
E.g.f. sqrt(1+tan(2*x)).
1
1, 1, -1, 11, -47, 601, -5521, 86771, -1296287, 25482481, -527699041, 12800059931, -335639304527, 9794548687561, -308817517422961, 10573293809103491, -388317397661640767, 15275057087004591841, -639584224876056953281, 28426125263460829489451, -1335823888802587475761007
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{m=0,..,(n-1)/2} ( binomial(2*n-4*m-2,n-2*m-1)*Sum_{j=0,..,2*m} ( binomial(j+n-2*m-1,n-2*m-1)*(j+n-2*m)!*2^(6*m-n-j+1)*(-1)^(m+n+j+1)*stirling2(n,j+n-2*m)))/(n-2*m) ) ), n>0, a(0)=1.
MAPLE
S:= series(sqrt(1+tan(2*x)), x, 31):
seq(coeff(S, x, j)*j!, j=0..30); # Robert Israel, Feb 28 2017
MATHEMATICA
With[{nn = 50}, CoefficientList[Series[Sqrt[1 + Tan[2*x]], {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Feb 28 2017 *)
PROG
(Maxima)
a(n):=sum((binomial(2*n-4*m-2, n-2*m-1)*sum(binomial(j+n-2*m-1, n-2*m-1)*(j+n-2*m)!*2^(6*m-n-j+1)*(-1)^(m+n+j+1)*stirling2(n, j+n-2*m), j, 0, 2*m))/(n-2*m), m, 0, (n-1)/2);
(PARI) x='x + O('x^50); Vec(serlaplace(sqrt(1 + tan(2*x)))) \\ G. C. Greubel, Feb 28 2017
CROSSREFS
Sequence in context: A354590 A067355 A138362 * A072372 A230982 A024530
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 03 2011
STATUS
approved