OFFSET
0,4
LINKS
Robert Israel, Table of n, a(n) for n = 0..390
FORMULA
a(n) = Sum_{m=0,..,(n-1)/2} ( binomial(2*n-4*m-2,n-2*m-1)*Sum_{j=0,..,2*m} ( binomial(j+n-2*m-1,n-2*m-1)*(j+n-2*m)!*2^(6*m-n-j+1)*(-1)^(m+n+j+1)*stirling2(n,j+n-2*m)))/(n-2*m) ) ), n>0, a(0)=1.
MAPLE
S:= series(sqrt(1+tan(2*x)), x, 31):
seq(coeff(S, x, j)*j!, j=0..30); # Robert Israel, Feb 28 2017
MATHEMATICA
With[{nn = 50}, CoefficientList[Series[Sqrt[1 + Tan[2*x]], {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Feb 28 2017 *)
PROG
(Maxima)
a(n):=sum((binomial(2*n-4*m-2, n-2*m-1)*sum(binomial(j+n-2*m-1, n-2*m-1)*(j+n-2*m)!*2^(6*m-n-j+1)*(-1)^(m+n+j+1)*stirling2(n, j+n-2*m), j, 0, 2*m))/(n-2*m), m, 0, (n-1)/2);
(PARI) x='x + O('x^50); Vec(serlaplace(sqrt(1 + tan(2*x)))) \\ G. C. Greubel, Feb 28 2017
CROSSREFS
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 03 2011
STATUS
approved