OFFSET
0,2
COMMENTS
Number of ways of placing an even number of indistinguishable objects in 9 distinguishable boxes with the condition that each box can hold most n objects.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
FORMULA
a(n)= ( (n+1)^9 + (1 + (-1)^n)/2 )/2.
a(n) = 9*a(n-1) - 35*a(n-2) + 75*a(n-3) - 90*a(n-4) + 42*a(n-5) + 42*a(n-6) - 90*a(n-7) + 75*a(n-8) - 35*a(n-9) + 9*a(n-10) - a(n-11).
G.f.: (1 + 247*x + 7573*x^2 + 51379*x^3 + 122275*x^4 + 122149*x^5 + 51463*x^6 + 7537*x^7 + 256*x^8) / ( (1+x)*(1-x)^10 ). - R. J. Mathar, Jun 06 2011
EXAMPLE
a(1)=256: there are 256 compositions of even numbers into 9 parts <= 1:
0: (0,0,0,0,0,0,0,0,0) --> 9!/9!0! = 1
2: (0,0,0,0,0,0,0,1,1) --> 9!/7!2! = 36
4: (0,0,0,0,0,1,1,1,1) --> 9!/5!4! = 126
8: (0,0,0,1,1,1,1,1,1) --> 9!/3!6! = 84
10: (0,1,1,1,1,1,1,1,1) --> 9!/1!8! = 9
MATHEMATICA
Table[1/2*((n + 1)^9 + (1 + (-1)^n)*1/2), {n, 0, 25}]
PROG
(Magma) [( (n+1)^9 + (1+(-1)^n)/2 )/2: n in [0..30]]; // Vincenzo Librandi, Jun 16 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Adi Dani, Jun 03 2011
STATUS
approved