login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191680
Number of compositions of odd natural numbers into 9 parts <= n.
1
0, 256, 9841, 131072, 976562, 5038848, 20176803, 67108864, 193710244, 500000000, 1178973845, 2579890176, 5302249686, 10330523392, 19221679687, 34359738368, 59293938248, 99179645184, 161343848889, 256000000000, 397140023290, 603634608896, 900576330731, 1320903770112, 1907348632812, 2714751839488
OFFSET
0,2
FORMULA
a(n) = ((n + 1)^9 - (1 + (-1)^n)/2)/2.
G.f.: x*(256 + 7537*x + 51463*x^2 + 122149*x^3 + 122275*x^4 + 51379*x^5 + 7573*x^6 + 247*x^7 + x^8) / ( (1+x)*(x-1)^10 ). - R. J. Mathar, Jun 29 2011
a(n) = 9*a(n-1) - 35*a(n-2) + 75*a(n-3) - 90*a(n-4) + 42*a(n-5) + 42*a(n-6) - 90*a(n-7) + 75*a(n-8) - 35*a(n-9) + 9*a(n-10) - a(n-11). - R. J. Mathar, Jun 29 2011
a(2n) = A191496(2n) - 1. a(2n+1) = A191496(2n+1). - R. J. Mathar, Jun 29 2011
EXAMPLE
a(1)=256 compositions of odd numbers into 9 parts <= 1:
1: (0,0,0,0,0,0,0,0,1) --> 9!/(8!1!) = 9
3: (0,0,0,0,0,0,1,1,1) --> 9!/(6!3!) = 84
5: (0,0,0,0,1,1,1,1,1) --> 9!/(4!5!) = 126
7: (0,0,1,1,1,1,1,1,1) --> 9!/(2!7!) = 36
9: (1,1,1,1,1,1,1,1,1) --> 9!/(0!9!) = 1
------------------------------------------
256
MATHEMATICA
Table[Floor[1/2*((n + 1)^9 - (1 + (-1)^n)/2)], {n, 0, 25}]
PROG
(Magma) [1/2*((n + 1)^9 - (1 + (-1)^n)/2): n in [0..30]]; // Vincenzo Librandi, Jun 16 2011
CROSSREFS
Sequence in context: A253135 A128991 A230973 * A191496 A016960 A224393
KEYWORD
nonn
AUTHOR
Adi Dani, Jun 11 2011
EXTENSIONS
Offset changed from 1 to 0 by Vincenzo Librandi, Jun 16 2011
STATUS
approved