login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191678
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (0,2), (2,2).
0
1, 1, 5, 15, 62, 233, 937, 3729, 15121, 61492, 251942, 1036215, 4279754, 17731181, 73670725, 306823695, 1280574706, 5354602495, 22426876445, 94070238840, 395106054632, 1661489413472, 6994494531010, 29474635716345, 124319047552309, 524797934104312, 2217091297558466, 9373180869094923
OFFSET
0,3
FORMULA
G.f.: A(x) where (4*x^6+12*x^5-20*x^3+27*x^2+12*x-4)*A(x)^3-(3*x^2+3*x-3)*A(x)+1 = 0. - Mark van Hoeij, Apr 17 2013
MAPLE
P := (4*x^6+12*x^5-20*x^3+27*x^2+12*x-4)*A^3-(3*x^2+3*x-3)*A+1;
Q := eval(P, A=A+1):
series(RootOf(Q, A)+1, x=0, 30); # Mark van Hoeij, Apr 17 2013
PROG
(PARI) /* same as in A092566 but use */
steps=[[1, 0], [1, 1], [0, 2], [2, 2]];
/* Joerg Arndt, Jun 30 2011 */
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jun 30 2011
STATUS
approved