login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191676
Numbers N such that N=(a+b)*c=a*b+c for some a,b,c>1.
3
14, 33, 39, 60, 64, 84, 95, 110, 138, 150, 155, 174, 189, 217, 248, 258, 259, 272, 315, 324, 360, 368, 390, 399, 405, 410, 430, 473, 504, 530, 539, 564, 584, 624, 663, 670, 732, 754, 770, 819, 852, 854, 869, 885, 897, 915, 1005, 1008, 1024, 1053, 1056, 1065, 1104, 1110, 1120, 1139, 1155, 1248, 1278, 1292, 1360, 1378, 1422
OFFSET
1,1
COMMENTS
Without imposing c>1, there would be the trivial decomposition a=c=1, b=N-1, for any N.
One has a>c, b>c, since, e.g., a<=c would imply N = ab+c <= c(b+1) < c(b+a) = N. Therefore one can impose the restriction 1 < c < b <= a.
LINKS
Claudio Meller, posting on SeqFan mailing list, June 9, 2011.
MAPLE
N:= 10^4: # for terms <= N
Res:= NULL:
for a from 3 to N/3 do
for b from 3 to a while a*b < N do
c:= a*b/(a+b-1);
if c::posint and c>1 then
v:= (a+b)*c;
if v<=N then Res:= Res, v fi
fi
od od:
sort(convert({Res}, list)); # Robert Israel, Nov 06 2019
MATHEMATICA
mx = 1424; lmt = Floor[9 Sqrt[mx]/2]; lst = {}; Do[ If[a*b + c == (a + b) c < mx, AppendTo[lst, a*b + c]], {a, 2, lmt}, {b, a + 1, lmt}, {c, 2, a - 1}]; Sort@ lst (* Robert G. Wilson v, Jun 17 2011 *)
PROG
(PARI) is_A191676(N)={fordiv(N, c, c*c>N & return; c>1 & fordiv(N-c, a, a*a>N-c & break; a>c & (a+(N-c)/a)*c==N & return(1)))}
CROSSREFS
Sequence in context: A076329 A261560 A250186 * A191866 A162279 A367346
KEYWORD
nonn
AUTHOR
M. F. Hasler, based on suggestion of Claudio Meller (cf. link), Jun 10 2011
STATUS
approved