OFFSET
1,1
COMMENTS
Without imposing c>1, there would be the trivial decomposition a=c=1, b=N-1, for any N.
One has a>c, b>c, since, e.g., a<=c would imply N = ab+c <= c(b+1) < c(b+a) = N. Therefore one can impose the restriction 1 < c < b <= a.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Claudio Meller, posting on SeqFan mailing list, June 9, 2011.
MAPLE
N:= 10^4: # for terms <= N
Res:= NULL:
for a from 3 to N/3 do
for b from 3 to a while a*b < N do
c:= a*b/(a+b-1);
if c::posint and c>1 then
v:= (a+b)*c;
if v<=N then Res:= Res, v fi
fi
od od:
sort(convert({Res}, list)); # Robert Israel, Nov 06 2019
MATHEMATICA
mx = 1424; lmt = Floor[9 Sqrt[mx]/2]; lst = {}; Do[ If[a*b + c == (a + b) c < mx, AppendTo[lst, a*b + c]], {a, 2, lmt}, {b, a + 1, lmt}, {c, 2, a - 1}]; Sort@ lst (* Robert G. Wilson v, Jun 17 2011 *)
PROG
(PARI) is_A191676(N)={fordiv(N, c, c*c>N & return; c>1 & fordiv(N-c, a, a*a>N-c & break; a>c & (a+(N-c)/a)*c==N & return(1)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, based on suggestion of Claudio Meller (cf. link), Jun 10 2011
STATUS
approved