The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261560 Semiprimes sp such that (sum of digits of (sp)) + (product of digits of (sp)) is also semiprime. 1
 14, 33, 38, 39, 46, 49, 55, 69, 74, 82, 86, 93, 94, 111, 121, 122, 141, 142, 146, 161, 166, 202, 214, 221, 226, 247, 249, 254, 259, 262, 274, 278, 287, 295, 301, 303, 323, 334, 346, 386, 411, 427, 445, 454, 458, 469, 485, 489, 501, 505, 529, 542, 565, 586, 589 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS K. D. Bajpai, Table of n, a(n) for n = 1..10000 EXAMPLE a(1) = 14 = (2 * 7), is semiprime. (1+4) + (1*4) = 9 = (3 * 3) is also semiprime. a(3) = 38 = (2 * 19), is semiprime. (3+8) + (3*8) = 35 = (7 * 5) is also semiprime. MAPLE with(numtheory): select(n -> bigomega(n)=2 and bigomega( add(d, d=convert(n, base, 10)) + mul(d, d=convert(n, base, 10)) ) = 2, [seq(n, n=1..300)]); MATHEMATICA Select[Range[2000], PrimeOmega[#] == 2 && PrimeOmega[(Plus @@ IntegerDigits[#]) + (Times @@ IntegerDigits[#])] == 2 &] PROG (PARI) for(n = 1, 300, d = digits(n); pd = prod(i = 1, #d, d[i]); if(bigomega(n)==2 && bigomega(sumdigits(n) + pd)==2, print1(n, ", "))); (MAGMA) IsSemiprime:=func; [n: n in [11..300] | IsSemiprime(n) and IsSemiprime(k) where k is (&+Intseq(n) + &*Intseq(n))]; CROSSREFS Cf. A001358, A061762, A118688, A118689, A118690. Sequence in context: A225420 A107484 A076329 * A250186 A191676 A191866 Adjacent sequences:  A261557 A261558 A261559 * A261561 A261562 A261563 KEYWORD nonn,base AUTHOR K. D. Bajpai, Aug 24 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 4 12:28 EDT 2022. Contains 355075 sequences. (Running on oeis4.)