OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..5000 (first 2001 terms from Vaclav Kotesovec)
FORMULA
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} -(-2)^d * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015
a(n) ~ c^(1/6) * exp(3^(2/3)*c^(1/3)*n^(2/3)/2) / (3^(3/4)*sqrt(2*Pi)*n^(2/3)), where c = Pi^2*log(2) + log(2)^3 - 6*polylog(3, -1/2) = 10.00970018379942727227807189532511265744588249928680712064... . - Vaclav Kotesovec, Jan 04 2016
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(2^j*binomial(i, j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40); # Alois P. Heinz, Sep 21 2018
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 + 2*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 50; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*2^k/k*x^k/(1 - x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x]
nmax = 50; s = 1+2*x; Do[s*=Sum[Binomial[k, j]*2^j*x^(j*k), {j, 0, nmax/k}]; s = Take[Expand[s], Min[nmax + 1, Exponent[s, x] + 1]]; , {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Jan 08 2016 *)
PROG
(PARI) {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, -(-2)^d * m^2/d^2) ) +x*O(x^n)), n)}
for(n=0, 40, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 30 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 24 2015
STATUS
approved