login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261563
Expansion of Product_{k>=1} ((1 + 2*x^k)/(1 - 2*x^k))^k.
5
1, 4, 16, 60, 192, 596, 1744, 4892, 13248, 34868, 89296, 223660, 548928, 1323060, 3137520, 7332332, 16907584, 38517444, 86777328, 193523404, 427562816, 936555044, 2035286576, 4390850268, 9409096576, 20037827876, 42429318480, 89369282460, 187325508288
OFFSET
0,2
LINKS
FORMULA
a(n) ~ c * 2^n, where c = 2 * Product_{j>=1} ((1 + 1/2^j)/(1 - 1/2^j))^(j+1) = 1021.5383556752320172813996404366861329314041364322798995039038143325883...
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} (2^d - (-2)^d) * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[((1 + 2*x^k)/(1 - 2*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 50; CoefficientList[Series[Exp[Sum[2^(2*k)/(2*k-1)*x^(2*k-1)/(1 - x^(2*k-1))^2, {k, 1, nmax}]], {x, 0, nmax}], x]
PROG
(PARI) {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, (2^d - (-2)^d) * m^2/d^2) ) +x*O(x^n)), n)}
for(n=0, 40, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 30 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 24 2015
STATUS
approved