OFFSET
0,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
FORMULA
a(n) ~ c * 2^n, where c = 2 * Product_{j>=1} ((1 + 1/2^j)/(1 - 1/2^j))^(j+1) = 1021.5383556752320172813996404366861329314041364322798995039038143325883...
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} (2^d - (-2)^d) * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[((1 + 2*x^k)/(1 - 2*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 50; CoefficientList[Series[Exp[Sum[2^(2*k)/(2*k-1)*x^(2*k-1)/(1 - x^(2*k-1))^2, {k, 1, nmax}]], {x, 0, nmax}], x]
PROG
(PARI) {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, (2^d - (-2)^d) * m^2/d^2) ) +x*O(x^n)), n)}
for(n=0, 40, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 30 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 24 2015
STATUS
approved