login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261559
Denominator of Product_{k=1..n} (2k/(2k+1))^((-1)^A000120(k)).
4
2, 8, 28, 224, 1232, 4004, 56056, 896896, 8520512, 14910896, 328039712, 41004964, 1066129064, 29851613792, 462700013776, 1346036403712, 4711127412992, 43577928570176, 127381637358976, 652830891464752, 9139632480506528, 402143829142287232, 9450379984843749952
OFFSET
1,1
COMMENTS
For all n, a(n) is even, 2-adic valuation of a(2^n) is 2n+1 and 2-adic valuation of a(3*2^n) is 2.
LINKS
Jeffrey Shallit, Ten Problems I Can't Solve, talk for the University of Waterloo Pure Math Club, July 11 2000.
MATHEMATICA
Table[Denominator@ Product[(2 k/(2 k + 1))^((-1)^DigitCount[k, 2, 1]), {k, 1, n}], {n, 23}] (* Michael De Vlieger, Aug 26 2015 *)
PROG
(PARI)
n = 22; R(k) = { if (hammingweight(k)%2, (2*k+1)/(2*k), (2*k)/(2*k+1)) };
p = vector(n); p[1] = R(1); for(i = 2, #p, p[i] = p[i-1] * R(i));
apply(denominator, p)
CROSSREFS
Cf. A000120, A010060, A094541, A094542, A261505 (numerator).
Sequence in context: A225689 A330211 A216785 * A061230 A241627 A293169
KEYWORD
nonn,frac
AUTHOR
Gheorghe Coserea, Aug 24 2015
STATUS
approved