login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of Product_{k=1..n} (2k/(2k+1))^((-1)^A000120(k)).
4

%I #33 Aug 30 2015 10:27:13

%S 2,8,28,224,1232,4004,56056,896896,8520512,14910896,328039712,

%T 41004964,1066129064,29851613792,462700013776,1346036403712,

%U 4711127412992,43577928570176,127381637358976,652830891464752,9139632480506528,402143829142287232,9450379984843749952

%N Denominator of Product_{k=1..n} (2k/(2k+1))^((-1)^A000120(k)).

%C For all n, a(n) is even, 2-adic valuation of a(2^n) is 2n+1 and 2-adic valuation of a(3*2^n) is 2.

%H Gheorghe Coserea, <a href="/A261559/b261559.txt">Table of n, a(n) for n = 1..1000</a>

%H Jean-Paul Allouche, <a href="http://algo.inria.fr/seminars/sem92-93/allouche.pdf">Series and infinite products related to binary expansion of integers</a>, December 07, 1992.

%H Jeffrey Shallit, <a href="http://www.cs.uwaterloo.ca/~shallit/Talks/pmc2.ps">Ten Problems I Can't Solve</a>, talk for the University of Waterloo Pure Math Club, July 11 2000.

%t Table[Denominator@ Product[(2 k/(2 k + 1))^((-1)^DigitCount[k, 2, 1]), {k, 1, n}], {n, 23}] (* _Michael De Vlieger_, Aug 26 2015 *)

%o (PARI)

%o n = 22; R(k) = { if (hammingweight(k)%2, (2*k+1)/(2*k), (2*k)/(2*k+1)) };

%o p = vector(n); p[1] = R(1); for(i = 2, #p, p[i] = p[i-1] * R(i));

%o apply(denominator, p)

%Y Cf. A000120, A010060, A094541, A094542, A261505 (numerator).

%K nonn,frac

%O 1,1

%A _Gheorghe Coserea_, Aug 24 2015