login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261505
Numerator of Product_{k=1..n} (2k/(2k+1))^((-1)^A000120(k)).
4
3, 15, 45, 405, 2025, 6075, 91125, 1549125, 13942125, 23236875, 534448125, 64133775, 1731611925, 50216745825, 753251187375, 2259753562125, 7683162111225, 69148459001025, 207445377003075, 1037226885015375, 14866918685220375, 669011340834916875
OFFSET
1,1
COMMENTS
Empirically, the infinite product converges slowly to 1.62816 ± 10^(-5).
LINKS
Jeffrey Shallit, Ten Problems I Can't Solve, talk for the University of Waterloo Pure Math Club, July 11 2000.
MATHEMATICA
Table[Numerator@ Product[(2 k/(2 k + 1))^((-1)^Plus @@ IntegerDigits[k, 2]), {k, 1, n}], {n, 22}] (* Michael De Vlieger, Aug 25 2015 *)
PROG
(PARI)
n = 22; R(k) = { if (hammingweight(k)%2, (2*k+1)/(2*k), (2*k)/(2*k+1)) };
p = vector(n); p[1] = R(1); for(i = 2, #p, p[i] = p[i-1] * R(i));
apply(numerator, p)
CROSSREFS
Cf. A000120, A010060, A094541, A094542, A261559 (denominator).
Sequence in context: A100737 A178669 A110464 * A331505 A088108 A226030
KEYWORD
nonn,frac
AUTHOR
Gheorghe Coserea, Aug 24 2015
STATUS
approved