login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226030
Smallest m such that A226029(m) = n.
2
1, 3, 15, 46, 4, 448, 1415, 13, 14143, 44722, 14, 447215, 45, 4472137, 14142137, 140, 141421357, 447213596, 1414213563, 4472135956, 14142135625, 44721359551, 141421356238, 447213595501, 1414213562374, 4472135955001, 14142135623732, 44721359549997, 141421356237311, 447213595499959
OFFSET
1,2
COMMENTS
a(39) = 44. - Michel Marcus, Jan 26 2022
Let k = ceiling(sqrt(2*10^m)). Then some terms are of the form k or k + 1. - David A. Corneth, Jan 27 2022
FORMULA
A226029(a(n)) = n and A226029(m) <> n for m < a(n).
PROG
(Haskell)
import Data.List (elemIndex)
import Data.Maybe (fromJust)
a226030 = (+ 1) . fromJust . (`elemIndex` a226029_list)
(PARI) nb(n) = {my(x=n*(n-1)/2+1, y=n*(n+1)/2, nx=#Str(x), ny=#Str(y), s=0); for (i=nx, ny, if (i==nx, if (i==ny, s+=(y+1-x)*i, s+=(10^i-x)*i), if (i==ny, s+=(y+1-10^(i-1))*i, s+=i*(10^(i+1)-10^i+1)); ); ); s; } \\ A182402
a(n) = my(k=1, last=nb(k), new=nb(k+1)); while (new-last !=n, k++; last=new; new=nb(k+1)); k; \\ Michel Marcus, Jan 26 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 26 2013
EXTENSIONS
a(12)-a(18) from Michel Marcus, Jan 26 2022
More terms from David A. Corneth, Jan 26 2022
STATUS
approved