Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jan 27 2022 13:28:10
%S 1,3,15,46,4,448,1415,13,14143,44722,14,447215,45,4472137,14142137,
%T 140,141421357,447213596,1414213563,4472135956,14142135625,
%U 44721359551,141421356238,447213595501,1414213562374,4472135955001,14142135623732,44721359549997,141421356237311,447213595499959
%N Smallest m such that A226029(m) = n.
%C a(39) = 44. - _Michel Marcus_, Jan 26 2022
%C Let k = ceiling(sqrt(2*10^m)). Then some terms are of the form k or k + 1. - _David A. Corneth_, Jan 27 2022
%F A226029(a(n)) = n and A226029(m) <> n for m < a(n).
%o (Haskell)
%o import Data.List (elemIndex)
%o import Data.Maybe (fromJust)
%o a226030 = (+ 1) . fromJust . (`elemIndex` a226029_list)
%o (PARI) nb(n) = {my(x=n*(n-1)/2+1, y=n*(n+1)/2, nx=#Str(x), ny=#Str(y), s=0); for (i=nx, ny, if (i==nx, if (i==ny, s+=(y+1-x)*i, s+=(10^i-x)*i), if (i==ny, s+=(y+1-10^(i-1))*i, s+=i*(10^(i+1)-10^i+1)););); s;} \\ A182402
%o a(n) = my(k=1, last=nb(k), new=nb(k+1)); while (new-last !=n, k++; last=new; new=nb(k+1)); k; \\ _Michel Marcus_, Jan 26 2022
%Y Cf. A068092, A182402, A226029.
%K nonn
%O 1,2
%A _Reinhard Zumkeller_, May 26 2013
%E a(12)-a(18) from _Michel Marcus_, Jan 26 2022
%E More terms from _David A. Corneth_, Jan 26 2022