login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261502
Number of necklaces with n white beads and 8*n black beads.
2
1, 1, 9, 109, 1641, 27151, 478341, 8782075, 166237161, 3220837534, 63562741159, 1273237637706, 25820645555109, 529080420540114, 10937268142896643, 227824992158991334, 4777204094770874857, 100757627271124231383, 2136117417348870713646, 45496022230420668679932
OFFSET
0,3
LINKS
F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
Eric Weisstein's World of Mathematics, Necklace
FORMULA
a(n) = 1/(9*n) * Sum_{d|n} C(9*n/d,n/d) * A000010(d) for n>0, a(0) = 1.
a(n) ~ 9^(9*n-1/2) / (sqrt(2*Pi) * 8^(8*n+1/2) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015
MAPLE
with(numtheory):
a:= n-> `if`(n=0, 1, add(binomial(9*n/d, n/d)
*phi(d), d=divisors(n))/(9*n)):
seq(a(n), n=0..25);
CROSSREFS
Column k=8 of A261494.
Sequence in context: A358601 A349335 A291815 * A359731 A105974 A053912
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 21 2015
STATUS
approved