login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261504 Number of necklaces with n white beads and 10*n black beads. 2
1, 1, 11, 166, 3091, 63251, 1376738, 31231278, 730421043, 17485161178, 426342182761, 10551652603526, 264383070217234, 6693356751004275, 170957058318902538, 4399826606699783666, 113989308154754290611, 2970465160237643057033, 77808659386282667142686 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

In general, for k>=1 is column k of A261494 asymptotic to (k+1)^((k+1)*n-1/2) / (sqrt(2*Pi) * k^(k*n+1/2) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..690

F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.

F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]

Eric Weisstein's World of Mathematics, Necklace

Wikipedia, Necklace (combinatorics)

Index entries for sequences related to necklaces

FORMULA

a(n) = 1/(11*n) * Sum_{d|n} C(11*n/d,n/d) * A000010(d) for n>0, a(0) = 1.

a(n) ~ 11^(11*n-1/2) / (sqrt(2*Pi) * 10^(10*n+1/2) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015

MAPLE

with(numtheory):

a:= n-> `if`(n=0, 1, add(binomial(11*n/d, n/d)

             *phi(d), d=divisors(n))/(11*n)):

seq(a(n), n=0..25);

MATHEMATICA

a[n_] := If[n == 0, 1, DivisorSum[n, Binomial[11*n/#, n/#]*EulerPhi[#]&]/ (11*n)];

Table[a[n], {n, 0, 25}] (* Jean-Fran├žois Alcover, Mar 28 2017, translated from Maple *)

CROSSREFS

Column k=10 of A261494.

Sequence in context: A174364 A229963 A051619 * A142513 A075141 A088293

Adjacent sequences:  A261501 A261502 A261503 * A261505 A261506 A261507

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Aug 21 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 14:37 EST 2019. Contains 329262 sequences. (Running on oeis4.)