login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261494
Number A(n,k) of necklaces with n white beads and k*n black beads; square array A(n,k), n>=0, k>=0, read by antidiagonals.
13
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 10, 10, 1, 1, 1, 5, 19, 43, 26, 1, 1, 1, 6, 31, 116, 201, 80, 1, 1, 1, 7, 46, 245, 776, 1038, 246, 1, 1, 1, 8, 64, 446, 2126, 5620, 5538, 810, 1, 1, 1, 9, 85, 735, 4751, 19811, 42288, 30667, 2704, 1
OFFSET
0,9
COMMENTS
For k>=1 is column k asymptotic to (k+1)^((k+1)*n-1/2) / (sqrt(2*Pi) * k^(k*n+1/2) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015
LINKS
FORMULA
A(n,k) = 1/((k+1)*n) * Sum_{d|n} C((k+1)*n/d,n/d) * A000010(d) for n>0, A(0,k) = 1.
A(n,k) = 1/((k+1)*n)*Sum_{i=1..n} C((k+1)*gcd(n,i),gcd(n,i)) = 1/((k+1)*n)*Sum_{i=1..n} C((k+1)*n/gcd(n,i),n/gcd(n,i))*phi(gcd(n,i))/phi(n/gcd(n,i)) for n >= 1, where phi = A000010. - Richard L. Ollerton, May 19 2021
EXAMPLE
A(2,2) = 3: 000011, 000101, 001001.
A(3,2) = 10: 000000111, 000001011, 000010011, 000100011, 001000011, 010000011, 000010101, 000100101, 001000101, 001001001.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 4, 10, 19, 31, 46, 64, ...
1, 10, 43, 116, 245, 446, 735, ...
1, 26, 201, 776, 2126, 4751, 9276, ...
1, 80, 1038, 5620, 19811, 54132, 124936, ...
MAPLE
with(numtheory):
A:= (n, k)-> `if`(n=0, 1, add(binomial((k+1)*n/d, n/d)
*phi(d), d=divisors(n))/((k+1)*n)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
A[n_, k_] := If[n==0, 1, DivisorSum[n, Binomial[(k+1)*n/#, n/#]*EulerPhi[#] /((k+1)*n)&]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
PROG
(PARI) a(n, k) = if(n<1, 1, sumdiv(n, d, binomial((k + 1)*n/d, n/d) * eulerphi(d)) / ((k + 1)*n));
for(d=0, 14, for(n=0, d, print1(a(n, d - n), ", "); ); print(); ) \\ Indranil Ghosh, Mar 25 2017
CROSSREFS
Main diagonal gives A261495.
Lower diagonal gives A261496.
Cf. A000010.
Sequence in context: A306684 A293991 A288638 * A365673 A349574 A378522
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 21 2015
STATUS
approved