OFFSET
0,9
COMMENTS
For k>=1 is column k asymptotic to (k+1)^((k+1)*n-1/2) / (sqrt(2*Pi) * k^(k*n+1/2) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
Eric Weisstein's World of Mathematics, Necklace
Wikipedia, Necklace (combinatorics)
FORMULA
A(n,k) = 1/((k+1)*n) * Sum_{d|n} C((k+1)*n/d,n/d) * A000010(d) for n>0, A(0,k) = 1.
A(n,k) = 1/((k+1)*n)*Sum_{i=1..n} C((k+1)*gcd(n,i),gcd(n,i)) = 1/((k+1)*n)*Sum_{i=1..n} C((k+1)*n/gcd(n,i),n/gcd(n,i))*phi(gcd(n,i))/phi(n/gcd(n,i)) for n >= 1, where phi = A000010. - Richard L. Ollerton, May 19 2021
EXAMPLE
A(2,2) = 3: 000011, 000101, 001001.
A(3,2) = 10: 000000111, 000001011, 000010011, 000100011, 001000011, 010000011, 000010101, 000100101, 001000101, 001001001.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 4, 10, 19, 31, 46, 64, ...
1, 10, 43, 116, 245, 446, 735, ...
1, 26, 201, 776, 2126, 4751, 9276, ...
1, 80, 1038, 5620, 19811, 54132, 124936, ...
MAPLE
with(numtheory):
A:= (n, k)-> `if`(n=0, 1, add(binomial((k+1)*n/d, n/d)
*phi(d), d=divisors(n))/((k+1)*n)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
A[n_, k_] := If[n==0, 1, DivisorSum[n, Binomial[(k+1)*n/#, n/#]*EulerPhi[#] /((k+1)*n)&]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
PROG
(PARI) a(n, k) = if(n<1, 1, sumdiv(n, d, binomial((k + 1)*n/d, n/d) * eulerphi(d)) / ((k + 1)*n));
for(d=0, 14, for(n=0, d, print1(a(n, d - n), ", "); ); print(); ) \\ Indranil Ghosh, Mar 25 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 21 2015
STATUS
approved