login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A288638
Number A(n,k) of n-digit biquanimous strings using digits {0,1,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
10
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 10, 8, 1, 1, 1, 5, 19, 33, 16, 1, 1, 1, 6, 31, 92, 106, 32, 1, 1, 1, 7, 46, 201, 421, 333, 64, 1, 1, 1, 8, 64, 376, 1206, 1830, 1030, 128, 1, 1, 1, 9, 85, 633, 2841, 6751, 7687, 3153, 256, 1
OFFSET
0,9
COMMENTS
A biquanimous string is a string whose digits can be split into two groups with equal sums.
LINKS
EXAMPLE
A(2,2) = 3: 00, 11, 22.
A(3,2) = 10: 000, 011, 022, 101, 110, 112, 121, 202, 211, 220.
A(3,3) = 19: 000, 011, 022, 033, 101, 110, 112, 121, 123, 132, 202, 211, 213, 220, 231, 303, 312, 321, 330.
A(4,1) = 8: 0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 4, 10, 19, 31, 46, 64, 85, ...
1, 8, 33, 92, 201, 376, 633, 988, ...
1, 16, 106, 421, 1206, 2841, 5801, 10696, ...
1, 32, 333, 1830, 6751, 19718, 48245, 104676, ...
1, 64, 1030, 7687, 36051, 128535, 372345, 939863, ...
MAPLE
b:= proc(n, k, s) option remember;
`if`(n=0, `if`(s={}, 0, 1), add(b(n-1, k, select(y->
y<=(n-1)*k, map(x-> [abs(x-i), x+i][], s))), i=0..k))
end:
A:= (n, k)-> b(n, k, {0}):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[n_, k_, s_] := b[n, k, s] = If[n == 0, If[s == {}, 0, 1], Sum[b[n-1, k, Select[Flatten[{Abs[#-i], #+i}& /@ s], # <= (n-1)*k&]], {i, 0, k}]];
A[n_, k_] := b[n, k, {0}];
Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 08 2018, from Maple *)
CROSSREFS
Rows n=0+1,2-3 give: A000012, A000027(k+1), A005448(k+1).
Main diagonal gives A288693.
Sequence in context: A084097 A306684 A293991 * A261494 A365673 A349574
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jun 12 2017
STATUS
approved