login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A288640 a(n) = (1 + sign(Im(ZetaZero(n)) - 2*Pi*e*exp(LambertW((n - 11/8)/e))))/2. 3
0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

2*Pi*e*exp(LambertW((n - 11/8)/e)) is the Franca-Leclair asymptotic of the nontrivial Riemann zeta zeros.

Positions of 0 are found in A282897. Positions of 1 are found in A282896.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

Guilherme França and André LeClair, A theory for the zeros of Riemann Zeta and other L-functions, arXiv:1407.4358 [math.NT], 2014, formula (163) at page 47.

Mats Granvik, Mathematica programs to compute the sequence.

FORMULA

Let ZetaZero(k) denote the zero of the Riemann zeta function on the critical line which has the k-th smallest positive imaginary part.

a(n) = (1 + sign(Im(ZetaZero(n)) - 2*Pi*e*exp(LambertW((n - 11/8)/e))))/2.

a(n) ~ (floor(Im(ZetaZero(n))/(2*Pi)*log(Im(ZetaZero(n))/(2*Pi*e)) + 11/8) - n + 1).

a(n) ~ (1 - sign(Im(zeta(1/2 + i*2*Pi*e*exp(LambertW((n - 11/8)/e))))))/2 where i = sqrt(-1).

a(n) ~ floor(2*(RiemannSiegelTheta(Im(ZetaZero(n)))/Pi - floor(RiemannSiegelTheta(Im(ZetaZero(n)))/Pi))).

There is a way to compute a(n) without prior knowledge of the exact locations of the Riemann zeta zeros. Let:

FrancaLeclair(n) = 2*Pi*e*exp(LambertW((n - 11/8)/e)),

NumberOfZetaZeros(t) = RiemannSiegelTheta(t)/Pi + Im(log(zeta(1/2 + i*t)))/Pi where i = sqrt(-1),

Then:

a(n) = n - 1 - NumberOfZetaZeros(FrancaLeclair(n)).

Conjecture:

a(n) ~ (1 + sign(tan((-RiemannSiegelTheta(im(zetazero (n)))))))/2.

MATHEMATICA

FrancaLeClair[n_] = 2*Pi*Exp[1]*Exp[ProductLog[(n - 11/8)/Exp[1]]]; Table[(1 + Sign[Im[ZetaZero[n]] - FrancaLeClair[n]])/2, {n, 1, 90}]

CROSSREFS

Cf. A002410, A273061, A282896, A282897.

Sequence in context: A189212 A147781 A327216 * A082446 A191156 A144611

Adjacent sequences:  A288637 A288638 A288639 * A288641 A288642 A288643

KEYWORD

nonn

AUTHOR

Mats Granvik, Jun 17 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 13:10 EDT 2021. Contains 345164 sequences. (Running on oeis4.)