OFFSET
1
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Guilherme França and André LeClair, A theory for the zeros of Riemann Zeta and other L-functions, arXiv:1407.4358 [math.NT], 2014, formula (163) at page 47.
Mats Granvik, Mathematica programs to compute the sequence.
FORMULA
Let ZetaZero(k) denote the zero of the Riemann zeta function on the critical line which has the k-th smallest positive imaginary part.
a(n) = (1 + sign(Im(ZetaZero(n)) - 2*Pi*e*exp(LambertW((n - 11/8)/e))))/2.
a(n) ~ (floor(Im(ZetaZero(n))/(2*Pi)*log(Im(ZetaZero(n))/(2*Pi*e)) + 11/8) - n + 1).
a(n) ~ (1 - sign(Im(zeta(1/2 + i*2*Pi*e*exp(LambertW((n - 11/8)/e))))))/2 where i = sqrt(-1).
a(n) ~ floor(2*(RiemannSiegelTheta(Im(ZetaZero(n)))/Pi - floor(RiemannSiegelTheta(Im(ZetaZero(n)))/Pi))).
There is a way to compute a(n) without prior knowledge of the exact locations of the Riemann zeta zeros. Let:
FrancaLeclair(n) = 2*Pi*e*exp(LambertW((n - 11/8)/e)),
NumberOfZetaZeros(t) = RiemannSiegelTheta(t)/Pi + Im(log(zeta(1/2 + i*t)))/Pi where i = sqrt(-1),
Then:
a(n) = n - 1 - NumberOfZetaZeros(FrancaLeclair(n)).
Conjecture:
a(n) ~ (1 + sign(tan((-RiemannSiegelTheta(im(zetazero (n)))))))/2.
MATHEMATICA
FrancaLeClair[n_] = 2*Pi*Exp[1]*Exp[ProductLog[(n - 11/8)/Exp[1]]]; Table[(1 + Sign[Im[ZetaZero[n]] - FrancaLeClair[n]])/2, {n, 1, 90}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Mats Granvik, Jun 17 2017
STATUS
approved