login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273061
Nearest integer to the França-Leclair approximation 2*Pi*(n - 11/8)/LambertW((n - 11/8)/exp(1)) of the Riemann zeta zeros.
9
15, 21, 25, 30, 34, 37, 41, 44, 47, 50, 53, 56, 59, 62, 64, 67, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 94, 97, 99, 101, 103, 106, 108, 110, 112, 114, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 142, 144, 146, 148, 150, 151, 153, 155, 157, 159, 161, 163
OFFSET
1,1
COMMENTS
This sequence is also the nearest integer to the n-th point t on the critical line such that Re(zeta(1/2+i*t))=0 and such that Im(zeta(1/2+i*t)) is not equal to zero, when excluding t=0.819545... Verified for the first 10000 cases. See Mathematica program for how to verify this.
Roger Bagula pointed out that the difference between the approximation and the points t, resembles a hyperbola.
Compare this sequence to the Gram points A002505.
The first point t such that Re(zeta(1/2+i*t))=0 and Im(zeta(1/2+i*t)) is not equal to zero, is: t(1)=14.5179196282622336505419642930... while for n=1 the França-Leclair approximation is 14.5213469530656281679750582094... This gives an error of 0.0034273248033... This decreases to 0.0003990193059... by n=10.
LINKS
Guilherme França and André LeClair, A theory for the zeros of Riemann Zeta and other L-functions, arXiv:1407.4358 [math.NT], 2014, formula (163) at page 47.
Eric Weisstein, Gram Point.
FORMULA
a(n) = round(2*Pi*(n - 11/8)/LambertW((n - 11/8)/exp(1))).
a(n) = round(2*Pi*exp(1)*exp(LambertW((n - 11/8)/exp(1)))). - Mats Granvik, Feb 27 2017
a(n) = round(2*Pi*exp(1 + LambertW((8*(n - 3/2) + 1)/(8*e)))) after the formula in MathWorld. - Mats Granvik, Feb 25 2017
For c = 1/2 the n-th complementary Gram point x is the fixed point solution to the iterative formula: x = 2*Pi*e*e^LambertW(((x/(2*Pi))*log(x/(2*Pi*e)) - c + n - 1 - RiemannSiegelTheta(x)/Pi)/e). - Mats Granvik, Jul 24 2017
MATHEMATICA
(*The nearest integer to the França-Leclair approximation*)
Round[Table[2*Pi*(n - 11/8)/ProductLog[(n - 11/8)/Exp[1]], {n, 1, 60}]]
(*The nearest integer to t such that Re(zeta(1/2+I*t))=0 while Im(zeta(1/2+I*t))=/0*)
Round[x /. Table[FindRoot[Re[Zeta[1/2 + I*x]] == 0, {x, 2*Pi*Exp[1]*Exp[ProductLog[(n - 11/8)/Exp[1]]]}], {n, 1, 60}]]
Clear[a, n, g]; a[n_] := g /. FindRoot[RiemannSiegelTheta[g] == Pi*(2*n - 1)/2, {g, 2*Pi*Exp[1]*Exp[ProductLog[(n - 11/8)/Exp[1]]]}]; a = Table[Round[a[n]], {n, 0, 60 - 1}] (* after Jean-François Alcover in A002505 *)
PROG
(PARI) a(n)=round(2*Pi*exp(lambertw((n-11/8)/exp(1))+1)) \\ Works for n > 1 on GP 2.8.0; Charles R Greathouse IV, May 15 2016
(Sage)
R = RealField(100)
a = lambda n: R(2*pi*(n - 11/8)/lambert_w((n - 11/8)/exp(1)))
print([a(n).round() for n in (1..60)]) # Peter Luschny, May 19 2016
KEYWORD
nonn
AUTHOR
Mats Granvik, May 14 2016
STATUS
approved