login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135297 Number of Riemann zeta function zeros on the critical line, less than n. 8
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 13, 14, 14, 14, 14, 14, 15, 15, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 25, 25, 25, 25, 26, 26, 27, 28, 28, 28, 29, 29 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,22

COMMENTS

This sequence is just the cumulative distribution of the zeros.

Apart from differing singularities, the beginning of this sequence agrees with the zeta zero counting functions (RiemannSiegelTheta(n) + im(log(zeta(1/2 + I*n))))/Pi + 1 and (sign(im(zeta(1/2 + I*n))) - 1)/2 + floor(n/(2*Pi)*log(n/(2*Pi*e)) + 7/8) + 1, but disagrees later. The first deviations are seen in the continuous counting function at locations of zeta zeros with indices A153815. See also A282793 and A282794. - Mats Granvik, Feb 21 2017

REFERENCES

H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0)

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

Mats Granvik, Mathematics Stackexchange

Andrew Guinand, A summation formula in the theory of prime numbers, page 111

Andrew Guinand, A summation formula in the theory of prime numbers, Proc. London Math. Soc. (1948) s2-50 (1): 107-119, see page 111.

Raymond Manzoni, Mathematics Stackexchange

Eric W. Weisstein, MathWorld: Riemann Zeta Function Zeros

Wikipedia, Riemann Zeta Function

Index entries for sequences related to zeta function

FORMULA

a(n) ~ n log n / (2 * Pi). - Charles R Greathouse IV, Mar 11 2011

From Mats Granvik, May 13 2017: (Start)

a(n) ~ im(LogGamma (1/4 + I*n/2))/Pi - n/(2*Pi)*log (Pi) + im(log(zeta(1/2 + I*n)))/Pi + 1

a(n) ~ floor(im(LogGamma (1/4 + I*n/2))/Pi - n/(2*Pi)*log(Pi) + 1) + (sign(im(zeta (1/2 + I*n))) - 1)/2 + 1

a(n) ~ (RiemannSiegelTheta(n) + im(log (zeta (1/2 + I*n))))/Pi + 1

a(n) ~ (floor(RiemannSiegelTheta(n)/Pi + 1)) + (sign(im (zeta(1/2 + I*n))) -1)/2 + 1

a(n) ~ n/(2*Pi)*log[n/(2*Pi*Exp(1))] + 7/8 + (im(log (zeta (1/2 + I*n))))/Pi - 1 - BigO(n^(-1)) + 1

a(n) ~ floor(n/(2*Pi)*log(n/(2*Pi*exp(1))) + 7/8) + (sign(im(zeta (1/2 + I*n))) - 1)/2 + 1

See A286707 for exact relations.

(End)

EXAMPLE

The first nontrivial zero is 1/2 + 14.1347...I; hence, a(15)=1.

MATHEMATICA

nn = 100; t = Table[0, {nn}]; k = 1; While[z = Im[ZetaZero[k]]; z < nn, k++; t[[Ceiling[z] ;; nn]]++]

With[{zz=Ceiling[Im[N[ZetaZero[Range[30]]]]]}, Table[If[MemberQ[zz, n], 1, 0], {n, Max[zz]}]]//Accumulate (* Harvey P. Dale, Aug 15 2017 *)

PROG

(Sage)

# This function makes sure no zeros are missed.

def A135297_list(n):

    Z = lcalc.zeros(n)

    R = []; pos = 1; count = 0

    for z in Z:

        while pos < z:

            R.append(count)

            pos += 1

        count += 1

    return R

A135297_list(30) # Peter Luschny, May 02 2014

(PARI) a(n) = #lfunzeros(L, n) \\ Felix Fröhlich, Jun 10 2019

CROSSREFS

Cf. A002410, A013629, A092783.

Sequence in context: A108955 A108956 A289133 * A176146 A171481 A230775

Adjacent sequences:  A135294 A135295 A135296 * A135298 A135299 A135300

KEYWORD

nonn

AUTHOR

Jean-François Alcover, Mar 09 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 22 14:22 EDT 2021. Contains 345380 sequences. (Running on oeis4.)