The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135298 a(n) = the total number of permutations (m(1),m(2),m(3)...m(j)) of (1,2,3,...,j) where n = 1*m(1) + 2*m(2) + 3*m(3) + ...+j*m(j), where j is over all positive integers. 3
 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 0, 0, 0, 1, 3, 1, 4, 2, 2, 2, 4, 1, 3, 1, 0, 0, 0, 0, 1, 4, 3, 6, 7, 6, 4, 10, 6, 10, 6, 10, 6, 10, 4, 6, 7, 6, 3, 4, 1, 1, 5, 6, 9, 16, 12, 14, 24, 20, 21, 23, 28, 24, 34, 20, 32, 42, 29, 29, 42, 32, 20, 34, 24, 28, 23, 21, 20, 25, 20, 22, 30, 38 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,12 COMMENTS Does every integer greater than some positive integer N have at least one such representation? a(n) > 0 for n > 34, a(n) > 1 for n > 56. - Alois P. Heinz, Aug 28 2014 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1770 FindStat - Combinatorial Statistic Finder, The rank of the permutation inside the alternating sign matrix lattice J. Sack and H. Úlfarsson, Refined inversion statistics on permutations, arXiv preprint arXiv:1106.1995 [math.CO], 2011-2012. EXAMPLE 21 has a(21)=3 such representations: 21 = 1*4 + 2*3 + 3*1 + 4*2 = 1*4 + 2*2 + 3*3 + 4*1 = 1*3 + 2*4 + 3*2 + 4*1. Not all representations of an integer n need to necessarily have the same j. For example, 91 = 1*1 + 2*2 + 3*3 + 4*4 + 5*5 + 6*6 (j=6). And 91 also equals 1*7 + 2*4 + 3*5 + 4*3 + 5*6 + 6*2 + 7*1 (j=7). 1 = 1*1; 4 = 1*2+2*1; 5 = 1*1+2*2; 10 = 1*3+2*2+3*1; 11 = 1*2+2*3+3*1; 11 = 1*3+2*1+3*2; 13 = 1*1+2*3+3*2; 13 = 1*2+2*1+3*3; 14 = 1*1+2*2+3*3; 20 = 1*4+2*3+3*2+4*1; 21 = 1*3+2*4+3*2+4*1; 21 = 1*4+2*2+3*3+4*1; 21 = 1*4+2*3+3*1+4*2; 22 = 1*3+2*4+3*1+4*2; 23 = 1*2+2*4+3*3+4*1; 23 = 1*3+2*2+3*4+4*1; 23 = 1*4+2*1+3*3+4*2; 23 = 1*4+2*2+3*1+4*3; 24 = 1*2+2*3+3*4+4*1; 24 = 1*4+2*1+3*2+4*3; 25 = 1*2+2*4+3*1+4*3; 25 = 1*3+2*1+3*4+4*2; 26 = 1*1+2*4+3*3+4*2; 26 = 1*3+2*2+3*1+4*4; 27 = 1*1+2*3+3*4+4*2; 27 = 1*1+2*4+3*2+4*3; 27 = 1*2+2*3+3*1+4*4; 27 = 1*3+2*1+3*2+4*4; 28 = 1*2+2*1+3*4+4*3; 29 = 1*1+2*2+3*4+4*3; 29 = 1*1+2*3+3*2+4*4; 29 = 1*2+2*1+3*3+4*4; 30 = 1*1+2*2+3*3+4*4; MAPLE A135298rec := proc(j, n, notm) local a, m ; a := 0 ; if n = 0 then if max( seq(e, e=notm) ) >= j then RETURN(0) ; else RETURN(1) ; fi ; end: for m from 1 do if n-j*m < 0 then break ; elif not m in notm then a := a+A135298rec(j+1, n-j*m, [op(notm), m] ) ; fi ; od: RETURN(a) ; end: A135298 := proc(n) A135298rec(1, n, []) ; end: for n from 1 to 140 do printf("%d, ", A135298(n)) ; od: # R. J. Mathar, Jan 30 2008 # second Maple program: n:= 8 : # gives binomial(n+3, 3) terms with(combinat): (p-> seq(coeff(p, x, j), j=0..binomial(n+3, 3)-1)) (add(add(x^add(i*l[i], i=1..h), l=permute(h)), h=0..n)); # Alois P. Heinz, Aug 29 2014 MATHEMATICA n = 8; (* gives binomial(n+3, 3)-1 terms *) Function[p, Table[ Coefficient[p, x, j], {j, 1, Binomial[n+3, 3]-1}]] @ Sum[x^(l.Range[h]), {h, 1, n}, {l, Permutations @ Range[h]}] (* Jean-François Alcover, Jul 22 2017, after Alois P. Heinz *) CROSSREFS Cf. A000292, A126972, A175929. Sequence in context: A137668 A056615 A060989 * A006996 A321430 A343914 Adjacent sequences: A135295 A135296 A135297 * A135299 A135300 A135301 KEYWORD nonn,look,changed AUTHOR Leroy Quet, Dec 04 2007 EXTENSIONS More terms from R. J. Mathar, Jan 30 2008 a(0)=1 prepended by Alois P. Heinz, Nov 23 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 11:15 EST 2023. Contains 367560 sequences. (Running on oeis4.)