The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181780 Numbers n which are Fermat pseudoprimes to some base b, 2 <= b <= n-2. 14
 15, 21, 25, 28, 33, 35, 39, 45, 49, 51, 52, 55, 57, 63, 65, 66, 69, 70, 75, 76, 77, 85, 87, 91, 93, 95, 99, 105, 111, 112, 115, 117, 119, 121, 123, 124, 125, 129, 130, 133, 135, 141, 143, 145, 147, 148, 153, 154, 155, 159, 161, 165, 169, 171, 172, 175, 176 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A nonprime number n is a Fermat pseudoprime to base b if b^(n-1) = 1 (mod n). It appears that these n are pseudoprimes for an even number of bases. When n is the product of two distinct primes, it appears that there are exactly two such bases x and y with x + y = n. See A211455, A211456, and A211457. - T. D. Noe, Apr 12 2012 LINKS Karsten Meyer and T. D. Noe, Table of n, a(n) for n = 1..10000 (first 5978 terms from Karsten Meyer) Karsten Meyer, Tabelle Pseudoprimzahlen (15-4999) Karsten Meyer, Rexx program for this sequence Eric Weisstein's World of Mathematics, Fermat Pseudoprime Index entries for sequences related to pseudoprimes FORMULA For any odd a(m), a(m) = A211456(m) + A211457(m). - Thomas Ordowski, Dec 09 2013 EXAMPLE 15 is Fermat pseudoprime to base 4 and 11, so it is a Fermat pseudoprime. MATHEMATICA t = {}; Do[s = Select[Range[2, n-2], PowerMod[#, n-1, n] == 1 &]; If[s != {}, AppendTo[t, n]], {n, Select[Range[213], ! PrimeQ[#] &]}]; t (* T. D. Noe, Nov 07 2011 *) (* The following program is much faster than the one above. See A227180 for indications of a proof of this assertion. *) Select[Range[213], ! IntegerQ[Log[3, #]] && ! PrimeQ[#] && GCD[# - 1, EulerPhi[#]] > 1 &] (* Emmanuel Vantieghem, Jul 06 2013 *) PROG (Rexx) See Meyer link. (PARI) fsp(n)= { /* whether n is Fermat pseudoprime to any base a where 2<=a<=n-2 */ for (a=2, n-2, if ( gcd(a, n)!=1, next() ); if ( (Mod(a, n))^(n-1)==+1, return(1) ) ); return(0); } for(n=3, 300, if(isprime(n), next()); if ( fsp(n) , print1(n, ", ") ); ); \\ Joerg Arndt, Jan 08 2011 (PARI) is(n)=if(isprime(n), return(0)); my(f=factor(n)[, 1]); prod(i=1, #f, gcd(f[i]-1, n-1)) > 2 \\ Charles R Greathouse IV, Dec 28 2016 CROSSREFS Cf. A039769, A181781, A211455, A211456, A211457, A211458, A227180, A280199. Even terms give A039772. - Thomas Ordowski, Dec 28 2016 Sequence in context: A325037 A154545 A156063 * A273061 A129926 A020204 Adjacent sequences: A181777 A181778 A181779 * A181781 A181782 A181783 KEYWORD nonn AUTHOR Karsten Meyer, Nov 12 2010 EXTENSIONS Used a comment line to give a more explicit definition. - N. J. A. Sloane, Nov 12 2010 Definition corrected by Max Alekseyev, Nov 12 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 00:22 EDT 2024. Contains 371850 sequences. (Running on oeis4.)