OFFSET
1,1
COMMENTS
Also this sequence is the union of all possible even Fermat pseudoprimes q to some prime base p>q such that q does not divide p-1. Note that all even nonprime divisors of p-1 are the Fermat pseudoprimes to prime base p. E.g. q = {4,6,12,18,28,36} is a set of even Fermat pseudoprimes to prime base p = 37, but only number q = 28 from this set does not divide p-1 = 36. - Alexander Adamchuk, Jun 16 2007
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867v1 [math.NT], May 04 2013.
Eric Weisstein's World of Mathematics, Fermat Pseudoprime
EXAMPLE
phi(28)=12, gcd(12,27)=3.
MAPLE
select(t -> igcd(numtheory:-phi(t), t-1)>1, [seq(n, n=2..1000, 2)]); # Robert Israel, May 15 2017
MATHEMATICA
Select[Range[2, 1000, 2], !CoprimeQ[EulerPhi[#], #-1]&] (* Jean-François Alcover, Sep 19 2018 *)
PROG
(PARI) isok(n) = !(n%2) && (gcd(eulerphi(n), n-1) != 1); \\ Michel Marcus, Mar 15 2019
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
STATUS
approved