login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181782
Odd composite numbers n that are strong pseudoprimes to some base a, 2 <= a <= n-2.
4
25, 49, 65, 85, 91, 121, 125, 133, 145, 169, 175, 185, 205, 217, 221, 231, 247, 259, 265, 289, 301, 305, 325, 341, 343, 361, 365, 377, 385, 403, 425, 427, 435, 445, 451, 469, 475, 481, 485, 493, 505, 511, 529, 533, 545, 553, 559, 561, 565, 589, 595, 625, 629, 637, 645, 651, 671, 679, 685, 689, 697
OFFSET
1,1
LINKS
EXAMPLE
49 is a strong pseudoprime to the bases 18, 19, 30 and 31, so 49 is in the sequence.
PROG
(PARI) /* function sppq() from http://www.jjj.de/pari/rabinmiller.gpi */
sppq(n, a)=
{ /* Return whether n is a strong pseudoprime to base a (Rabin Miller) */
local(q, t, b, e);
q = n-1; t = 0; while ( 0==bitand(q, 1), q\=2; t+=1 );
/* here n==2^t*q+1 */
b = Mod(a, n)^q;
if ( 1==b, return(1) );
e = 1;
while ( e<t,
if( (b==1) || (b==n-1), break(); );
b *= b;
e++;
);
return( if ( b!=(n-1), 0, 1 ) );
}
forstep(n=3, 1000, 2, if(isprime(n), next()); for(a=2, n-2, if(sppq(n, a), print1(n, ", "); break())); );
/* Joerg Arndt, Dec 27 2010 */
(PARI) select( is_A181782(n)={bittest(n, 0) && !isprime(n) && for(a=2, n-2, my(t=valuation(n-1, 2), b=Mod(a, n)^(n>>t)); b==1&&return(1); while(t-->0 && b!=-1 && b!=1, b=b^2); b==-1&&return(1))}, [1..700]) \\ Defines is_A181782(): select(...) gives a check and illustration for free. Inside the for loop is the exact equivalent of the sppq() function above. - M. F. Hasler, Nov 26 2018
CROSSREFS
Cf. A141768.
Sequence in context: A091300 A112771 A278931 * A322121 A020146 A020244
KEYWORD
nonn
AUTHOR
Karsten Meyer, Nov 10 2010
EXTENSIONS
Definition corrected by Max Alekseyev, Nov 12 2010
Terms corrected by Joerg Arndt, Dec 27 2010
STATUS
approved