|
|
A002505
|
|
Nearest integer to the n-th Gram point.
(Formerly M5052 N2185)
|
|
8
|
|
|
18, 23, 28, 32, 35, 39, 42, 46, 49, 52, 55, 58, 60, 63, 66, 68, 71, 74, 76, 79, 81, 84, 86, 88, 91, 93, 95, 98, 100, 102, 104, 107, 109, 111, 113, 115, 118, 120, 122, 124, 126
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Every integer greater than 3295 is in this sequence. - T. D. Noe, Aug 03 2007
Nearest integer to points t such that Re(zeta(1/2+i*t)) is not equal to zero and Im(zeta(1/2+i*t))=0. - Mats Granvik, May 14 2016
|
|
REFERENCES
|
C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, 1960, p. 58.
A. Ivić, The Theory of Hardy's Z-Function, Cambridge University Press, 2013, pages 109-112.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Eric Weisstein's World of Mathematics, Gram Point.
|
|
FORMULA
|
a(n) = round(2*Pi*exp(1 + LambertW((8*n + 1)/(8*exp(1))))), Eric Weisstein's World of Mathematics.
a(n+1) = round(2*Pi*(n - 7/8)/LambertW((n - 7/8)/exp(1))), after Guilherme França, André LeClair formula (163) page 47.
(End)
For c = 0 the n-th Gram point x is the fixed point solution to the iterative formula:
x = 2*Pi*e^(LambertW (-((c - n + RiemannSiegelTheta (x)/Pi + (x*(-log (x) + 1 + log (2) + log (Pi)))/(2*Pi) + 2)/e)) + 1). - Mats Granvik, Jun 17 2017
|
|
MATHEMATICA
|
a[n_] := Round[ g /. FindRoot[ RiemannSiegelTheta[g] == Pi*n, {g, 2*Pi*Exp[1 + ProductLog[(8*n + 1)/(8*E)]]}]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 17 2012, after Eric W. Weisstein *)
|
|
PROG
|
(Sage)
a = lambda n: round(2*pi*(n - 7/8)/lambert_w((n - 7/8)/exp(1)))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|