|
|
A182438
|
|
Numbers n such that neither n^2+n-1 nor n^2-n-1 is prime.
|
|
1
|
|
|
1, 18, 23, 33, 34, 37, 43, 52, 58, 62, 63, 72, 73, 74, 75, 78, 79, 80, 81, 82, 88, 91, 92, 98, 99, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 118, 119, 122, 123, 124, 128, 129, 133, 136, 137, 143, 147, 151, 152, 157, 162, 166, 167, 168, 173
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
18^2+18-1=341 is not prime, and 18^2-18-1=305 is not prime, so 18 is in the sequence.
|
|
MATHEMATICA
|
Select[Range[500], !PrimeQ[#^2 + # - 1] && !PrimeQ[#^2 - # - 1] &] (* Vincenzo Librandi, Jan 19 2013 *)
Select[Range[200], NoneTrue[#^2+{#-1, -#-1}, PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 04 2018 *)
|
|
PROG
|
(Magma) [n: n in [1..180] | not IsPrime(n^2+n-1) and not IsPrime(n^2-n-1)]; // Vincenzo Librandi, Jan 19 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|