login
A339473
Numbers k such that floor(sqrt(k)) divides k^2, but does not divide k.
0
18, 22, 68, 76, 84, 87, 93, 96, 150, 162, 260, 264, 268, 276, 280, 284, 330, 336, 348, 354, 410, 430, 588, 612, 630, 635, 640, 645, 655, 660, 665, 670, 738, 747, 765, 774, 798, 826, 1032, 1040, 1048, 1064, 1072, 1080, 1302, 1308, 1314, 1320, 1326, 1338, 1344, 1350
OFFSET
1,1
EXAMPLE
18 is in the sequence since floor(sqrt(18)) = 4, which does not divide 18, but it does divide 18^2 = 324.
MATHEMATICA
Flatten[Table[If[(1 - Ceiling[n^2/Floor[Sqrt[n]]] + Floor[n^2/Floor[Sqrt[n]]]) (Ceiling[n/Floor[Sqrt[n]]] - Floor[n/Floor[Sqrt[n]]]) == 1, n, {}], {n, 2000}]]
PROG
(PARI) isok(k) = (k % sqrtint(k)) && !(k^2 % sqrtint(k)); \\ Michel Marcus, Apr 24 2021
(Python)
from math import isqrt
def ok(k): r = isqrt(k); return k % r != 0 and k**2 % r == 0
print(list(filter(ok, range(1, 1351)))) # Michael S. Branicky, Apr 24 2021
CROSSREFS
Cf. A006446.
Sequence in context: A290172 A031407 A267826 * A361627 A002505 A182438
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Apr 24 2021
STATUS
approved