login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084097
Square array whose rows have e.g.f. exp(x)*cosh(sqrt(k)*x), k>=0, read by ascending antidiagonals.
3
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 7, 8, 1, 1, 1, 5, 10, 17, 16, 1, 1, 1, 6, 13, 28, 41, 32, 1, 1, 1, 7, 16, 41, 76, 99, 64, 1, 1, 1, 8, 19, 56, 121, 208, 239, 128, 1, 1, 1, 9, 22, 73, 176, 365, 568, 577, 256, 1, 1, 1, 10, 25, 92, 241, 576, 1093, 1552, 1393, 512, 1
OFFSET
0,9
COMMENTS
Rows are the binomial transforms of expansions of cosh(sqrt(k)*x), k >= 0.
LINKS
FORMULA
From Robert G. Wilson v, Jan 02 2013: (Start)
A(n, k) = (1/2)*( (1 + sqrt(n))^k + (1 - sqrt(n))^k ) (array).
T(n, k) = A(n-k, k). (End)
T(n, k) = Sum_{j=0..floor(k/2)} binomial(k-j, j)*((n-k-1)/4)^j/(k-j), with T(n, 0) = 1 (antidiagonal triangle T(n,k)). - G. C. Greubel, Oct 15 2022
EXAMPLE
Array, A(n,k), begins:
.n\k.........0..1...2...3....4.....5......6......7.......8........9.......10
.0: A000012..1..1...1...1....1.....1......1......1.......1........1........1
.1: A000079..1..1...2...4....8....16.....32.....64.....128......256......512
.2: A001333..1..1...3...7...17....41.....99....239.....577.....1393.....3363
.3: A026150..1..1...4..10...28....76....208....568....1552.....4240....11584
.4: A046717..1..1...5..13...41...121....365...1093....3281.....9841....29525
.5: A084057..1..1...6..16...56...176....576...1856....6016....19456....62976
.6: A002533..1..1...7..19...73...241....847...2899...10033....34561...119287
.7: A083098..1..1...8..22...92...316...1184...4264...15632....56848...207488
.8: A084058..1..1...9..25..113...401...1593...5993...23137....88225...338409
.9: A003665..1..1..10..28..136...496...2080...8128...32896...130816...524800
10: A002535..1..1..11..31..161...601...2651..10711...45281...186961...781451
11: A133294..1..1..12..34..188...716...3312..13784...60688...259216..1125312
12: A090042..1..1..13..37..217...841...4069..17389...79537...350353..1575613
13: A125816..1..1..14..40..248...976...4928..21568..102272...463360..2153984
14: A133343..1..1..15..43..281..1121...5895..26363..129361...601441..2884575
15: A133345..1..1..16..46..316..1276...6976..31816..161296...768016..3794176
16: A120612..1..1..17..49..353..1441...8177..37969..198593...966721..4912337
17: A133356..1..1..18..52..392..1616...9504..44864..241792..1201408..6271488
18: A125818..1..1..19..55..433..1801..10963..52543..291457..1476145..7907059
- Robert G. Wilson v, Jan 02 2013
Antidiagonal triangle, T(n,k), begins:
1;
1, 1;
1, 1, 1;
1, 1, 2, 1;
1, 1, 3, 4, 1;
1, 1, 4, 7, 8, 1;
1, 1, 5, 10, 17, 16, 1;
1, 1, 6, 13, 28, 41, 32, 1;
1, 1, 7, 16, 41, 76, 99, 64, 1;
1, 1, 8, 19, 56, 121, 208, 239, 128, 1;
1, 1, 9, 22, 73, 176, 365, 568, 577, 256, 1;
1, 1, 10, 25, 92, 241, 576, 1093, 1552, 1393, 512, 1;
MATHEMATICA
T[j_, k_] := Expand[((1 + Sqrt[j])^k + (1 - Sqrt[j])^k)/2]; T[1, 0] = 1; Table[ T[j - k, k], {j, 0, 11}, {k, 0, j}] // Flatten (* Robert G. Wilson v, Jan 02 2013 *)
PROG
(Magma)
function A084097(n, k)
if k eq 0 then return 1;
else return k*2^(k-1)*(&+[ Binomial(k-j, j)*((n-k-1)/4)^j/(k-j): j in [0..Floor(k/2)]]);
end if; return A084097; end function;
[A084097(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 15 2022
(SageMath)
def A084097(n, k):
if (k==0): return 1
else: return k*2^(k-1)*sum( binomial(k-j, j)*((n-k-1)/4)^j/(k-j) for j in range( (k+2)//2 ) )
flatten([[A084097(n, k) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Oct 15 2022
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, May 11 2003
EXTENSIONS
Edited by N. J. A. Sloane, Jul 14 2010
STATUS
approved