login
A084097
Square array whose rows have e.g.f. exp(x)*cosh(sqrt(k)*x), k>=0, read by ascending antidiagonals.
3
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 7, 8, 1, 1, 1, 5, 10, 17, 16, 1, 1, 1, 6, 13, 28, 41, 32, 1, 1, 1, 7, 16, 41, 76, 99, 64, 1, 1, 1, 8, 19, 56, 121, 208, 239, 128, 1, 1, 1, 9, 22, 73, 176, 365, 568, 577, 256, 1, 1, 1, 10, 25, 92, 241, 576, 1093, 1552, 1393, 512, 1
OFFSET
0,9
COMMENTS
Rows are the binomial transforms of expansions of cosh(sqrt(k)*x), k >= 0.
LINKS
FORMULA
From Robert G. Wilson v, Jan 02 2013: (Start)
A(n, k) = (1/2)*( (1 + sqrt(n))^k + (1 - sqrt(n))^k ) (array).
T(n, k) = A(n-k, k). (End)
T(n, k) = Sum_{j=0..floor(k/2)} binomial(k-j, j)*((n-k-1)/4)^j/(k-j), with T(n, 0) = 1 (antidiagonal triangle T(n,k)). - G. C. Greubel, Oct 15 2022
EXAMPLE
Array, A(n,k), begins:
.n\k.........0..1...2...3....4.....5......6......7.......8........9.......10
.0: A000012..1..1...1...1....1.....1......1......1.......1........1........1
.1: A000079..1..1...2...4....8....16.....32.....64.....128......256......512
.2: A001333..1..1...3...7...17....41.....99....239.....577.....1393.....3363
.3: A026150..1..1...4..10...28....76....208....568....1552.....4240....11584
.4: A046717..1..1...5..13...41...121....365...1093....3281.....9841....29525
.5: A084057..1..1...6..16...56...176....576...1856....6016....19456....62976
.6: A002533..1..1...7..19...73...241....847...2899...10033....34561...119287
.7: A083098..1..1...8..22...92...316...1184...4264...15632....56848...207488
.8: A084058..1..1...9..25..113...401...1593...5993...23137....88225...338409
.9: A003665..1..1..10..28..136...496...2080...8128...32896...130816...524800
10: A002535..1..1..11..31..161...601...2651..10711...45281...186961...781451
11: A133294..1..1..12..34..188...716...3312..13784...60688...259216..1125312
12: A090042..1..1..13..37..217...841...4069..17389...79537...350353..1575613
13: A125816..1..1..14..40..248...976...4928..21568..102272...463360..2153984
14: A133343..1..1..15..43..281..1121...5895..26363..129361...601441..2884575
15: A133345..1..1..16..46..316..1276...6976..31816..161296...768016..3794176
16: A120612..1..1..17..49..353..1441...8177..37969..198593...966721..4912337
17: A133356..1..1..18..52..392..1616...9504..44864..241792..1201408..6271488
18: A125818..1..1..19..55..433..1801..10963..52543..291457..1476145..7907059
- Robert G. Wilson v, Jan 02 2013
Antidiagonal triangle, T(n,k), begins:
1;
1, 1;
1, 1, 1;
1, 1, 2, 1;
1, 1, 3, 4, 1;
1, 1, 4, 7, 8, 1;
1, 1, 5, 10, 17, 16, 1;
1, 1, 6, 13, 28, 41, 32, 1;
1, 1, 7, 16, 41, 76, 99, 64, 1;
1, 1, 8, 19, 56, 121, 208, 239, 128, 1;
1, 1, 9, 22, 73, 176, 365, 568, 577, 256, 1;
1, 1, 10, 25, 92, 241, 576, 1093, 1552, 1393, 512, 1;
MATHEMATICA
T[j_, k_] := Expand[((1 + Sqrt[j])^k + (1 - Sqrt[j])^k)/2]; T[1, 0] = 1; Table[ T[j - k, k], {j, 0, 11}, {k, 0, j}] // Flatten (* Robert G. Wilson v, Jan 02 2013 *)
PROG
(Magma)
function A084097(n, k)
if k eq 0 then return 1;
else return k*2^(k-1)*(&+[ Binomial(k-j, j)*((n-k-1)/4)^j/(k-j): j in [0..Floor(k/2)]]);
end if; return A084097; end function;
[A084097(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 15 2022
(SageMath)
def A084097(n, k):
if (k==0): return 1
else: return k*2^(k-1)*sum( binomial(k-j, j)*((n-k-1)/4)^j/(k-j) for j in range( (k+2)//2 ) )
flatten([[A084097(n, k) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Oct 15 2022
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, May 11 2003
EXTENSIONS
Edited by N. J. A. Sloane, Jul 14 2010
STATUS
approved