login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133345
a(n) = 2*a(n-1) + 14*a(n-2) for n>1, a(0)=1, a(1)=1.
7
1, 1, 16, 46, 316, 1276, 6976, 31816, 161296, 768016, 3794176, 18340576, 89799616, 436367296, 2129929216, 10369000576, 50557010176, 246280028416, 1200358199296, 5848636796416, 28502288382976, 138885491915776
OFFSET
0,3
COMMENTS
Binomial transform of A001024 (powers of 15), with interpolated zeros.
a(n) is the number of compositions of n when there are 1 type of 1 and 15 types of other natural numbers. - Milan Janjic, Aug 13 2010
FORMULA
G.f.: (1-x)/(1-2*x-14*x^2).
a(n) = Sum_{k=0..n} A098158(n,k)*15^(n-k). - Philippe Deléham, Dec 26 2007
If p[1]=1, and p[i]=15, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
a(n) = (b*i)^(n-1)*(b*i*ChebyshevU(n, -i/b) - ChebyshevU(n-1, -i/b)), with b = sqrt(14). - G. C. Greubel, Oct 15 2022
MATHEMATICA
LinearRecurrence[{2, 14}, {1, 1}, 30] (* Harvey P. Dale, Jan 07 2016 *)
PROG
(PARI) Vec((1-x)/(1-2*x-14*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jan 12 2012
(Magma) [n le 2 select 1 else 2*(Self(n-1) +7*Self(n-2)): n in [1..41]]; // G. C. Greubel, Oct 15 2022
(SageMath)
A133345=BinaryRecurrenceSequence(2, 14, 1, 1)
[A133345(n) for n in range(41)] # G. C. Greubel, Oct 15 2022
CROSSREFS
Sequence in context: A244094 A235549 A126370 * A253231 A253350 A204616
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Dec 21 2007
STATUS
approved