

A125818


a(n) = ((1 + 3*sqrt(2))^n + (1  3*sqrt(2))^n)/2.


7



1, 1, 19, 55, 433, 1801, 10963, 52543, 291457, 1476145, 7907059, 40908583, 216237169, 1127920249, 5931872371, 31038388975, 162918608257, 853489829089, 4476595998547, 23462519091607, 123027170158513, 644917164874345, 3381296222443411, 17726184247750687
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Binomial transform of [1, 0, 18, 0, 324, 0, 5832, 0, 104976, 0, ...] =: powers of 18 (A001027) with interpolated zeros.  Philippe Deléham, Dec 02 2008
a(n1) is the number of compositions of n when there are 1 type of 1 and 18 types of other natural numbers.  Milan Janjic, Aug 13 2010


LINKS

T. D. Noe, Table of n, a(n) for n = 1..200
Index entries for linear recurrences with constant coefficients, signature (2, 17).


FORMULA

From Philippe Deléham, Dec 12 2006: (Start)
a(n) = 2*a(n1) + 17*a(n2), with a(0)=a(1)=1.
G.f.: (1x)/(12*x17*x^2). (End)
a(n) = Sum_{k=0..n} A098158(n,k)*18^(nk).  Philippe Deléham, Dec 26 2007
If p[1]=1, and p[i]=18, (i>1), and if A is Hessenberg matrix of order n If p[1]=1, and p[i]=18, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[ji+1], (i<=j), A[i,j]=1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n+1)=det A.  Milan Janjic, Apr 29 2010


MATHEMATICA

Expand[Table[((1+3*Sqrt[2])^n +(13*Sqrt[2])^n)/2, {n, 0, 30}]]
(* alternate program *)
LinearRecurrence[{2, 17}, {1, 1}, 30] (* T. D. Noe, Mar 28 2012 *)


PROG

(PARI) my(x='x+O('x^30)); Vec((1x)/(12*x17*x^2)) \\ G. C. Greubel, Aug 03 2019
(MAGMA) I:=[1, 1]; [n le 2 select I[n] else 2*Self(n1) +17*Self(n2): n in [1..30]]; // G. C. Greubel, Aug 03 2019
(Sage) ((1x)/(12*x17*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
(GAP) a:=[1, 1];; for n in [3..30] do a[n]:=2*a[n1]+17*a[n2]; od; a; # G. C. Greubel, Aug 03 2019


CROSSREFS

Cf. A125817.
Sequence in context: A069131 A124712 A126373 * A093362 A251073 A176413
Adjacent sequences: A125815 A125816 A125817 * A125819 A125820 A125821


KEYWORD

nonn


AUTHOR

Artur Jasinski, Dec 10 2006


STATUS

approved



