This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125818 a(n) = ((1 + 3*sqrt(2))^n + (1 - 3*sqrt(2))^n)/2. 7
 1, 1, 19, 55, 433, 1801, 10963, 52543, 291457, 1476145, 7907059, 40908583, 216237169, 1127920249, 5931872371, 31038388975, 162918608257, 853489829089, 4476595998547, 23462519091607, 123027170158513, 644917164874345, 3381296222443411, 17726184247750687 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Binomial transform of [1, 0, 18, 0, 324, 0, 5832, 0, 104976, 0, ...] =: powers of 18 (A001027) with interpolated zeros. - Philippe Deléham, Dec 02 2008 a(n-1) is the number of compositions of n when there are 1 type of 1 and 18 types of other natural numbers. - Milan Janjic, Aug 13 2010 LINKS T. D. Noe, Table of n, a(n) for n = 1..200 Index entries for linear recurrences with constant coefficients, signature (2, 17). FORMULA From Philippe Deléham, Dec 12 2006: (Start) a(n) = 2*a(n-1) + 17*a(n-2), with a(0)=a(1)=1. G.f.: (1-x)/(1-2*x-17*x^2). (End) a(n) = Sum_{k=0..n} A098158(n,k)*18^(n-k). - Philippe Deléham, Dec 26 2007 If p[1]=1, and p[i]=18, (i>1), and if A is Hessenberg matrix of order n If p[1]=1, and p[i]=18, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n+1)=det A. - Milan Janjic, Apr 29 2010 MATHEMATICA Expand[Table[((1+3*Sqrt[2])^n +(1-3*Sqrt[2])^n)/2, {n, 0, 30}]] (* alternate program *) LinearRecurrence[{2, 17}, {1, 1}, 30] (* T. D. Noe, Mar 28 2012 *) PROG (PARI) my(x='x+O('x^30)); Vec((1-x)/(1-2*x-17*x^2)) \\ G. C. Greubel, Aug 03 2019 (MAGMA) I:=[1, 1]; [n le 2 select I[n] else 2*Self(n-1) +17*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 03 2019 (Sage) ((1-x)/(1-2*x-17*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019 (GAP) a:=[1, 1];; for n in [3..30] do a[n]:=2*a[n-1]+17*a[n-2]; od; a; # G. C. Greubel, Aug 03 2019 CROSSREFS Cf. A125817. Sequence in context: A069131 A124712 A126373 * A093362 A251073 A176413 Adjacent sequences:  A125815 A125816 A125817 * A125819 A125820 A125821 KEYWORD nonn AUTHOR Artur Jasinski, Dec 10 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 09:25 EST 2019. Contains 329791 sequences. (Running on oeis4.)