login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125818 a(n) = ((1 + 3*sqrt(2))^n + (1 - 3*sqrt(2))^n)/2. 7
1, 1, 19, 55, 433, 1801, 10963, 52543, 291457, 1476145, 7907059, 40908583, 216237169, 1127920249, 5931872371, 31038388975, 162918608257, 853489829089, 4476595998547, 23462519091607, 123027170158513, 644917164874345, 3381296222443411, 17726184247750687 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Binomial transform of [1, 0, 18, 0, 324, 0, 5832, 0, 104976, 0, ...] =: powers of 18 (A001027) with interpolated zeros. - Philippe Deléham, Dec 02 2008

a(n-1) is the number of compositions of n when there are 1 type of 1 and 18 types of other natural numbers. - Milan Janjic, Aug 13 2010

LINKS

T. D. Noe, Table of n, a(n) for n = 1..200

Index entries for linear recurrences with constant coefficients, signature (2, 17).

FORMULA

From Philippe Deléham, Dec 12 2006: (Start)

a(n) = 2*a(n-1) + 17*a(n-2), with a(0)=a(1)=1.

G.f.: (1-x)/(1-2*x-17*x^2). (End)

a(n) = Sum_{k=0..n} A098158(n,k)*18^(n-k). - Philippe Deléham, Dec 26 2007

If p[1]=1, and p[i]=18, (i>1), and if A is Hessenberg matrix of order n If p[1]=1, and p[i]=18, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n+1)=det A. - Milan Janjic, Apr 29 2010

MATHEMATICA

Expand[Table[((1+3*Sqrt[2])^n +(1-3*Sqrt[2])^n)/2, {n, 0, 30}]]

(* alternate program *)

LinearRecurrence[{2, 17}, {1, 1}, 30] (* T. D. Noe, Mar 28 2012 *)

PROG

(PARI) my(x='x+O('x^30)); Vec((1-x)/(1-2*x-17*x^2)) \\ G. C. Greubel, Aug 03 2019

(MAGMA) I:=[1, 1]; [n le 2 select I[n] else 2*Self(n-1) +17*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 03 2019

(Sage) ((1-x)/(1-2*x-17*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019

(GAP) a:=[1, 1];; for n in [3..30] do a[n]:=2*a[n-1]+17*a[n-2]; od; a; # G. C. Greubel, Aug 03 2019

CROSSREFS

Cf. A125817.

Sequence in context: A069131 A124712 A126373 * A093362 A251073 A176413

Adjacent sequences:  A125815 A125816 A125817 * A125819 A125820 A125821

KEYWORD

nonn

AUTHOR

Artur Jasinski, Dec 10 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 09:25 EST 2019. Contains 329791 sequences. (Running on oeis4.)