login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125816 a(n) = ((1+sqrt(13))^n + (1-sqrt(13))^n)/2. 8
1, 1, 14, 40, 248, 976, 4928, 21568, 102272, 463360, 2153984, 9868288, 45584384, 209588224, 966189056, 4447436800, 20489142272, 94347526144, 434564759552, 2001299832832, 9217376780288, 42450351554560, 195509224472576 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Binomial transform of A001022(powers of 13), with interpolated zeros . - Philippe Deléham, Dec 20 2007

a(n-1) is the number of compositions of n when there are 1 type of 1 and 13 types of other natural numbers. - Milan Janjic, Aug 13 2010

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (2,12).

FORMULA

From Philippe Deléham, Dec 12 2006: (Start)

a(n) = 2*a(n-1) + 12*a(n-2), with a(0)=a(1)=1.

G.f.: (1-x)/(1-2*x-12*x^2). (End)

a(n) = Sum_{k=0..n} A098158(n,k)*13^(n-k). - Philippe Deléham, Dec 20 2007

If p[1]=1, and p[i]=13, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1,(i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n+1)=det A. - Milan Janjic, Apr 29 2010

MATHEMATICA

Expand[Table[((1+Sqrt[13])^n +(1-Sqrt[13])^n)/(2), {n, 0, 30}]] (* Artur Jasinski *)

LinearRecurrence[{2, 12}, {1, 1}, 30] (* G. C. Greubel, Aug 02 2019 *)

PROG

(PARI) my(x='x+O('x^30)); Vec((1-x)/(1-2*x-12*x^2)) \\ G. C. Greubel, Aug 02 2019

(MAGMA) I:=[1, 1]; [n le 2 select I[n] else 2*Self(n-1) +12*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019

(Sage) ((1-x)/(1-2*x-12*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019

(GAP) a:=[1, 1];; for n in [3..30] do a[n]:=2*a[n-1]+12*a[n-2]; od; a; # G. C. Greubel, Aug 02 2019

CROSSREFS

Cf. A091914, A127262.

Sequence in context: A069126 A124707 A126368 * A105869 A216298 A056034

Adjacent sequences:  A125813 A125814 A125815 * A125817 A125818 A125819

KEYWORD

nonn

AUTHOR

Artur Jasinski, Dec 10 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 01:31 EST 2019. Contains 329978 sequences. (Running on oeis4.)