

A125816


a(n) = ((1+sqrt(13))^n + (1sqrt(13))^n)/2.


8



1, 1, 14, 40, 248, 976, 4928, 21568, 102272, 463360, 2153984, 9868288, 45584384, 209588224, 966189056, 4447436800, 20489142272, 94347526144, 434564759552, 2001299832832, 9217376780288, 42450351554560, 195509224472576
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Binomial transform of A001022(powers of 13), with interpolated zeros .  Philippe Deléham, Dec 20 2007
a(n1) is the number of compositions of n when there are 1 type of 1 and 13 types of other natural numbers.  Milan Janjic, Aug 13 2010


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (2,12).


FORMULA

From Philippe Deléham, Dec 12 2006: (Start)
a(n) = 2*a(n1) + 12*a(n2), with a(0)=a(1)=1.
G.f.: (1x)/(12*x12*x^2). (End)
a(n) = Sum_{k=0..n} A098158(n,k)*13^(nk).  Philippe Deléham, Dec 20 2007
If p[1]=1, and p[i]=13, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[ji+1], (i<=j), A[i,j]=1,(i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n+1)=det A.  Milan Janjic, Apr 29 2010


MATHEMATICA

Expand[Table[((1+Sqrt[13])^n +(1Sqrt[13])^n)/(2), {n, 0, 30}]] (* Artur Jasinski *)
LinearRecurrence[{2, 12}, {1, 1}, 30] (* G. C. Greubel, Aug 02 2019 *)


PROG

(PARI) my(x='x+O('x^30)); Vec((1x)/(12*x12*x^2)) \\ G. C. Greubel, Aug 02 2019
(MAGMA) I:=[1, 1]; [n le 2 select I[n] else 2*Self(n1) +12*Self(n2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
(Sage) ((1x)/(12*x12*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019
(GAP) a:=[1, 1];; for n in [3..30] do a[n]:=2*a[n1]+12*a[n2]; od; a; # G. C. Greubel, Aug 02 2019


CROSSREFS

Cf. A091914, A127262.
Sequence in context: A069126 A124707 A126368 * A105869 A216298 A056034
Adjacent sequences: A125813 A125814 A125815 * A125817 A125818 A125819


KEYWORD

nonn


AUTHOR

Artur Jasinski, Dec 10 2006


STATUS

approved



