login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125816
a(n) = ((1+sqrt(13))^n + (1-sqrt(13))^n)/2.
8
1, 1, 14, 40, 248, 976, 4928, 21568, 102272, 463360, 2153984, 9868288, 45584384, 209588224, 966189056, 4447436800, 20489142272, 94347526144, 434564759552, 2001299832832, 9217376780288, 42450351554560, 195509224472576
OFFSET
1,3
COMMENTS
Binomial transform of A001022(powers of 13), with interpolated zeros. - Philippe Deléham, Dec 20 2007
a(n-1) is the number of compositions of n when there are 1 type of 1 and 13 types of other natural numbers. - Milan Janjic, Aug 13 2010
FORMULA
From Philippe Deléham, Dec 12 2006: (Start)
a(n) = 2*a(n-1) + 12*a(n-2), with a(0)=a(1)=1.
G.f.: (1-x)/(1-2*x-12*x^2). (End)
a(n) = Sum_{k=0..n} A098158(n,k)*13^(n-k). - Philippe Deléham, Dec 20 2007
If p[1]=1, and p[i]=13, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1,(i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n+1)=det A. - Milan Janjic, Apr 29 2010
MATHEMATICA
Expand[Table[((1+Sqrt[13])^n +(1-Sqrt[13])^n)/(2), {n, 0, 30}]] (* Artur Jasinski *)
LinearRecurrence[{2, 12}, {1, 1}, 30] (* G. C. Greubel, Aug 02 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-x)/(1-2*x-12*x^2)) \\ G. C. Greubel, Aug 02 2019
(Magma) I:=[1, 1]; [n le 2 select I[n] else 2*Self(n-1) +12*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
(Sage) ((1-x)/(1-2*x-12*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019
(GAP) a:=[1, 1];; for n in [3..30] do a[n]:=2*a[n-1]+12*a[n-2]; od; a; # G. C. Greubel, Aug 02 2019
CROSSREFS
Cf. A127262. First differences of A091914.
Sequence in context: A069126 A124707 A126368 * A105869 A216298 A056034
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 10 2006
STATUS
approved