login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084100
Expansion of (1+x-x^2-x^3)/(1+x^2).
4
1, 1, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2
OFFSET
0,3
COMMENTS
Partial sums are A084099.
The unsigned sequence 1,1,2,2,2,2,.. has g.f. (1+x^2)/(1-x) and a(n)=sum{k=0..n, binomial(1,k/2)(1+(-1)^k)/2}. Its partial sums are A004275(n+1). The sequence 1,-1,2,-2,2,-2,... has g.f. (1+x^2)/(1+x) and a(n)=sum{k=0..n, (-1)^(n-k)binomial(1,k/2)(1+(-1)^k)/2}. - Paul Barry, Oct 15 2004
FORMULA
Euler transform of length 4 sequence [1, -3, 0, 1]. - Michael Somos, Jan 05 2017
G.f.: (1 + x) * (1 - x^2) / (1 + x^2). - Michael Somos, Jan 05 2017
a(n) = a(1-n) for all n in Z. - Michael Somos, Jan 05 2017
a(2*n) = a(2*n + 1) = A280560(n) for all n in Z. - Michael Somos, Jan 05 2017
EXAMPLE
G.f. = 1 + x - 2*x^2 - 2*x^3 + 2*x^4 + 2*x^5 - 2*x^6 - 2*x^7 + 2*x^8 + 2*x^9 + ...
MATHEMATICA
CoefficientList[Series[(1+x-x^2-x^3)/(1+x^2), {x, 0, 100}], x] (* Harvey P. Dale, Apr 20 2011 *)
a[ n_] := (-1)^Quotient[n, 2] If[ Quotient[n, 2] != 0, 2, 1]; (* Michael Somos, Jan 05 2017 *)
PROG
(PARI) {a(n) = (-1)^(n\2) * if( n\2, 2, 1)}; /* Michael Somos, Jan 05 2017 */
CROSSREFS
Sequence in context: A300403 A077433 A065685 * A329683 A130130 A046698
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 15 2003
STATUS
approved