OFFSET
0,2
COMMENTS
Transform of sqrt(1+2x)/sqrt(1-2x) (A063886) under the Chebyshev transformation A(x)->((1-x^2)/(1+x^2))*A(x/(1+x^2)). - Paul Barry, Oct 12 2004
Euler transform of length 4 sequence [2, -3, 0, 1]. - Michael Somos, Aug 04 2009
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,-1).
FORMULA
G.f.: (1+x)^2/(1+x^2).
a(n) = 2 * A101455(n) for n>0. - N. J. A. Sloane, Jun 01 2010
a(n+2) = (-1)^A180969(1,n)*((-1)^n - 1). - Adriano Caroli, Nov 18 2010
G.f.: 4*x + 2/(1+x)/G(0), where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 19 2013
From Wesley Ivan Hurt, Oct 27 2015: (Start)
a(n) = (1-sign(n)*(-1)^n)*(-1)^floor(n/2).
a(n) = 2*(n mod 2)*(-1)^floor(n/2) for n>0, a(0)=1.
a(n) = (1-(-1)^n)*(-1)^(n*(n-1)/2) for n>0, a(0)=1. (End)
From Colin Barker, Oct 27 2015: (Start)
a(n) = -a(n-2).
a(n) = i*((-i)^n-i^n) for n>0, where i = sqrt(-1).
(End)
EXAMPLE
G.f. = 1 + 2*x - 2*x^3 + 2*x^5 - 2*x^7 + 2*x^9 - 2*x^11 + 2*x^13 - 2*x^15 + ...
MAPLE
A084099:=n->(1-(-1)^n)*(-1)^((2*n-1+(-1)^n)/4): 1, seq(A084099(n), n=1..100); # Wesley Ivan Hurt, Oct 27 2015
MATHEMATICA
CoefficientList[Series[(1+x)^2/(1+x^2), {x, 0, 110}], x] (* or *) Join[ {1}, PadRight[{}, 120, {2, 0, -2, 0}]] (* Harvey P. Dale, Nov 23 2011 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 2 * if( n%2, (-1)^(n\2)) )}; /* Michael Somos, Aug 04 2009 */
(Magma) [1] cat [Integers()!((1-(-1)^n)*(-1)^(n*(n-1)/2)): n in [1..100]]; // Wesley Ivan Hurt, Oct 27 2015
(PARI) a(n) = if(n==0, 1, I*((-I)^n-I^n)) \\ Colin Barker, Oct 27 2015
(PARI) Vec((1+x)^2/(1+x^2) + O(x^100)) \\ Colin Barker, Oct 27 2015
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul Barry, May 15 2003
STATUS
approved