login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077860
Expansion of 1/((1 - 2*x + 2*x^2)*(1-x)).
4
1, 3, 5, 5, 1, -7, -15, -15, 1, 33, 65, 65, 1, -127, -255, -255, 1, 513, 1025, 1025, 1, -2047, -4095, -4095, 1, 8193, 16385, 16385, 1, -32767, -65535, -65535, 1, 131073, 262145, 262145, 1, -524287, -1048575, -1048575, 1, 2097153, 4194305, 4194305, 1, -8388607, -16777215, -16777215
OFFSET
0,2
FORMULA
a(n) = 1-A146559(n+2). a(n)= 3*a(n-1) -4*a(n-2) +2*a(n-3). - R. J. Mathar, Jan 18 2011
G.f.: Q(0) where Q(k) = 1 + k*(2*x+1) + 8*x - 2*x*(k+1)*(k+5)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
G.f.: G(0)/(2*(1-x)^2), where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
a(n) = Sum_{k=0..n} ((-1)^k*2^(n-k)*binomial(n-k-1,k)). - Vladimir Kruchinin, Jul 02 2015
a(n) = 1 + 2^(1 + n/2)*sin((n*Pi)/4). - Jean-François Alcover, Jul 02 2015
a(n) = 1 + 2*Im((1 + i)^n), where i is the imaginary unit. - Daniel Suteu, Dec 21 2018
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n+2,2*k+2). - Taras Goy, Jan 03 2025
MATHEMATICA
Join[{a=1, b=3}, Table[c=2*b-2*a+1; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)
CoefficientList[Series[1/((1-2x+2x^2)(1-x)), {x, 0, 60}], x] (* or *) LinearRecurrence[{3, -4, 2}, {1, 3, 5}, 60] (* Harvey P. Dale, Feb 01 2013 *)
PROG
(PARI) Vec(1/((1-2*x+2*x^2)*(1-x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(PARI) a(n) = 1 + 2*imag((1 + I)^n); \\ Daniel Suteu, Dec 21 2018
(Maxima) a(n):=sum((-1)^k*2^(n-k)*binomial(n-k-1, k), k, 0, n); /* Vladimir Kruchinin, Jul 02 2015 */
(Magma) I:=[1, 3, 5]; [n le 3 select I[n] else 3*Self(n-1)-4*Self(n-2)+2*Self(n-3): n in [1..60]]; // Vincenzo Librandi, Jul 02 2015
CROSSREFS
Sequence in context: A106233 A366568 A198492 * A261340 A078063 A373304
KEYWORD
sign,easy,changed
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved