login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176742
Expansion of (1 - x^2) / (1 + x^2) in powers of x.
12
1, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2
OFFSET
0,3
COMMENTS
Difference sequence of A057077.
Sequence of determinants of matrices for some bipartite graphs, called Tz(n). The graph Tz(4) appears in the logo for the beer called Tannenzäpfle (small fir cone), brewed by Badische Staatsbrauerei Rothaus, Germany, hence the name Tz. See the link for this logo with Tz(4).
The vertex-vertex matrix for these bipartite graphs will also be called Tz(n) (without leading to confusion).
General proof by expanding the determinant a(n) = determinant(Tz(n)) along the first column yielding b(n-1)-b(n-2), with b(n-1) the A_{1,1} minor of the matrix Tz(n), and deriving a recurrence for the b(n), namely b(n) = -b(n-2) with inputs b(0) = 1 = b(1). This gives b(n) = A057077(n), n>=0.
FORMULA
Euler transform of length 4 sequence [0, -2, 0, 1]. - Michael Somos, Mar 21 2011
Moebius transform is length 4 sequence [0, -2, 0, 4]. - Michael Somos, Mar 22 2011
a(n) = a(-n) for all n in Z. a(n) = c_4(n) if n>1, where c_k(n) is Ramanujan's sum. - Michael Somos, Mar 21 2011
a(n-1) := determinant(Tz(n)), n>=1. The rows of the matrix Tz(4) are [[1, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 1]]. Tz(1)=(1), and Tz(2) has rows [[1, 1], [1, 1]]. The matrix for the generalization Tz(n) has rows [[1,1,0,...,0], [1,0,1,0,...,0], [0,1,0,1,0,...,0], ..., [0,...,0,1,0,1], [0,...,0,1,1].
a(0)=1, a(2*k-1)= 0, a(4*k) = +2, a(4*k-2) = -2, k>=1.
O.g.f.: (1-x^2)/(1+x^2).
a(n) = A057077(n) - A057077(n-1), n>=1. a(0)=1.
Dirichlet g.f. sum_{n>=1} a(n)/n^s = zeta(s)*(4^(1-s)-2^(1-s)). - R. J. Mathar, Apr 11 2011
a(n) = (((n+1) mod 2)+((n+2+sign(n)) mod 2))*(-1)^ceiling(n/2). - Wesley Ivan Hurt, Jun 20 2014
EXAMPLE
G.f. = 1 - 2*x^2 + 2*x^4 - 2*x^6 + 2*x^8 - 2*x^10 + 2*x^12 - 2*x^14 + 2*x^16 + ...
The bipartite graphs Tz(n) (n>=1) look like |, |X|, |XX|, |XXX|, ... For n>=2 the lines have to be connected to give the 2*n nodes and 2*n edges. The n=1 graph Tz(1) has 2*1=2 nodes and only one edge.
n=1: determinant((1))=1; n=2: determinant(Matrix([[1,1],[1,1]]))=0; n=3: determinant(Matrix([[1,1,0],[1,0,1],[0,1,1]]))=-2; n=4: determinant(Tz(4))=0; etc.
MAPLE
a := n -> 2^signum(n)*(-1)^iquo(n+1, 2)*modp(n+1, 2);
seq(a(n), n=0..100); # Peter Luschny, Jun 22 2014
MATHEMATICA
Join[{1}, Table[{0, -2, 0, 2}, {26}]] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
a[ n_] := - Boole[n == 0] + {0, -2, 0, 2}[[Mod[ n, 4, 1]]]; (* Michael Somos, May 05 2015 *)
PadRight[{1}, 120, {2, 0, -2, 0}] (* Harvey P. Dale, Apr 13 2019 *)
PROG
(PARI) {a(n) = - (n == 0) + [2, 0, -2, 0][n%4 + 1]}; /* Michael Somos, Mar 21 2011 */
CROSSREFS
Sequence in context: A230103 A267602 A021499 * A010673 A084099 A036665
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Oct 15 2010
STATUS
approved