login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140895
A Lucas-Binet triangle read by rows: t(n,m)=((( 1 + Sqrt[Prime[n]]))^m + (( 1 - Sqrt[Prime[n]]))^m)/2.
1
1, 1, 4, 1, 6, 16, 1, 8, 22, 92, 1, 12, 34, 188, 716, 1, 14, 40, 248, 976, 4928, 1, 18, 52, 392, 1616, 9504, 44864, 1, 20, 58, 476, 1996, 12560, 61048, 348176, 1, 24, 70, 668, 2876, 20448, 104168, 658192, 3608080, 1, 30, 88, 1016, 4496, 37440, 200768
OFFSET
1,3
COMMENTS
Row sums are: {1, 5, 23, 123, 951, 6207, 56447, 424335, 4394527, 67853311, ...}.
REFERENCES
Arthur Benjamin and Jennifer J. Quinn, Fibonacci and Lucas Identities through Colored Tilings, Utilitas Mathematica, Vol 56, pp. 137-142, November, 1999. http://www.math.hmc.edu/~benjamin/papers.html
FORMULA
t(n,m)=((( 1 + Sqrt[Prime[n]]))^m + (( 1 - Sqrt[Prime[n]]))^m)/2.
EXAMPLE
{1},
{1, 4},
{1, 6, 16},
{1, 8, 22, 92},
{1, 12, 34, 188, 716},
{1, 14, 40, 248, 976, 4928},
{1, 18, 52, 392, 1616, 9504, 44864},
{1, 20, 58, 476, 1996, 12560, 61048, 348176},
{1, 24, 70, 668, 2876, 20448, 104168, 658192, 3608080},
{1, 30, 88, 1016, 4496, 37440, 200768, 1449856, 8521216, 57638400}
MATHEMATICA
Binet[n_, m_] = ((( 1 + Sqrt[Prime[n]]))^m + (( 1 - Sqrt[Prime[n]]))^m)/2; a = Table[Table[ExpandAll[Binet[n, m]], {m, 1, n}], {n, 1, 10}]; Flatten[a]
CROSSREFS
Sequence in context: A298829 A056140 A225419 * A343599 A191714 A370356
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Aug 01 2008
STATUS
approved