login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191714
a(n,k) equals the number of semistandard Young tableaux with shape of a partition of n and maximal element <= k.
8
1, 1, 4, 1, 6, 19, 1, 9, 39, 116, 1, 12, 69, 260, 751, 1, 16, 119, 560, 1955, 5552, 1, 20, 189, 1100, 4615, 15372, 43219, 1, 25, 294, 2090, 10460, 40677, 131131, 366088, 1, 30, 434, 3740, 22220, 100562, 370909, 1168008, 3245311, 1, 36, 630, 6512, 45628, 239316, 1007083, 3570240, 11042199, 30569012, 1, 42, 882, 10868, 89420, 541926, 2596573, 10347864, 35587071, 108535130, 299662672, 1, 49, 1218, 17732, 170340, 1188341, 6466159, 28915056, 110426979, 370661885, 1117689232, 3079276708
OFFSET
1,3
COMMENTS
Maximal element can be any integer, but is chosen here to be <=n.
LINKS
EXAMPLE
For n=3 and k=2 the SSYT are
par= {3} SSYT= {{1, 1, 1}}, {{2, 1, 1}}, {{2, 2, 1}}, {{2, 2, 2}}
par= {2,1} SSYT= {{2, 1}, {1}}, {{2, 2}, {1}}
par= {1,1,1} SSYT= none
counts 4+2+0 = 6 = a(3,2).
Table begins:
1;
1, 4;
1, 6, 19;
1, 9, 39, 116;
1, 12, 69, 260, 751;
1, 16, 119, 560, 1955, 5552;
1, 20, 189, 1100, 4615, 15372, 43219; ...
MATHEMATICA
Needs["Combinatorica`"];
hooklength[(p_)?PartitionQ] := Block[{ferr = (PadLeft[1 + 0*Range[#1], Max[p]] &) /@ p}, DeleteCases[(Rest[FoldList[Plus, 0, #1]] &) /@ ferr + Reverse /@ Reverse[Transpose[(Rest[FoldList[Plus, 0, #1]] &) /@ Reverse[Reverse /@ Transpose[ferr]]]], 0, -1] - 1];
content[(p_)?PartitionQ]:= Block[{le= Max[p], ferr =(PadLeft[1+ 0*Range[#1], Max[p]]&) /@ p}, DeleteCases[ MapIndexed[-le+ Range[le, 1, -1]- #1- Tr[#2]&, 0*ferr]*ferr, 0, -1]+ le];
stanley[(p_)?PartitionQ, t_Integer] := Times @@ ((t + Flatten[content[p]])/Flatten[hooklength[p]]);
Table[Tr[ stanley[#, k] &/@ Partitions[n] ] , {n, 12}, {k, n}]
CROSSREFS
Main diagonal gives A209673.
Sequence in context: A225419 A140895 A343599 * A370356 A126150 A374370
KEYWORD
nonn,tabl
AUTHOR
Wouter Meeussen, Jun 12 2011
STATUS
approved