login
A140892
a(n) = (n-1)^F(n) - F(n)^(n-1), where F(n) = A000045(n).
0
-1, 0, 0, 0, 399, 357857, 13055867207, 558545862282195466, 5070602400912917604201018916608, 30432527221704537086371993251530170527181380482652674, 99999999999999999999999999999999999999999999999999999999999999999999968818280070033816399
OFFSET
1,5
FORMULA
a(n) = (n-1)^A000045(n) - A000045(n)^(n-1). - Jonathan Vos Post, Jul 12 2008
EXAMPLE
a(1) = (1-1)^F(1) - F(1)^(1-1) = 0^1 - 1^0 = 0 - 1 = -1;
a(4) = (4-1)^F(4) - F(4)^(4-1) = 3^3 - 3^3 = 27 - 27 = 0;
a(5) = (5-1)^F(5) - F(5)^(5-1) = 4^5 - 5^4 = 1024 - 625 = 399.
MATHEMATICA
Table[(n-1)^Fibonacci[n] - Fibonacci[n]^(n-1), {n, 1, 12}] (* Georg Fischer, Apr 11 2023 *)
CROSSREFS
Sequence in context: A249408 A216928 A283384 * A115470 A356821 A223284
KEYWORD
sign,less
AUTHOR
EXTENSIONS
More terms from Jonathan Vos Post, Jul 12 2008
a(1) and a(7) corrected by Georg Fischer, Apr 11 2024
STATUS
approved