login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140894
Triangle T(n,k) = sum_{0<=j<=k/2} A034867(k,j)*prime(n)^j, read by rows, 0<=k<n.
0
1, 1, 2, 1, 2, 8, 1, 2, 10, 32, 1, 2, 14, 48, 236, 1, 2, 16, 56, 304, 1280, 1, 2, 20, 72, 464, 2080, 11584, 1, 2, 22, 80, 556, 2552, 15112, 76160, 1, 2, 26, 96, 764, 3640, 24088, 128256, 786448, 1, 2, 32, 120, 1136, 5632, 43072, 243840, 1693696, 10214912
OFFSET
1,3
COMMENTS
Row sums are 1, 3, 11, 45, 301, 1659, 14223, 94485, 943321, 12202443...
FORMULA
T(n,m)=( (1+sqrt prime(n))^m - (1-sqrt prime(n))^m) / (2*sqrt prime(n)).
EXAMPLE
1;
1, 2;
1, 2, 8;
1, 2, 10, 32;
1, 2, 14, 48, 236;
1, 2, 16, 56, 304, 1280;
1, 2, 20, 72, 464, 2080, 11584;
1, 2, 22, 80, 556, 2552, 15112, 76160;
1, 2, 26, 96, 764, 3640, 24088, 128256, 786448;
1, 2, 32, 120, 1136, 5632, 43072, 243840, 1693696, 10214912;
MATHEMATICA
Binet[n_, m_] := (((1 + Sqrt[Prime[n]]))^m - (( 1 - Sqrt[Prime[n]]))^m)/(2*Sqrt[Prime[n]]); a = Table[Table[ExpandAll[Binet[n, m]], {m, 1, n}], {n, 1, 10}] Flatten[a]
CROSSREFS
Cf. A117809.
Sequence in context: A179946 A198757 A173755 * A208747 A334729 A221878
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved