login
A221878
Number of order-preserving or order-reversing full contraction mappings (of an n-chain) with exactly k fixed points.
6
1, 0, 1, 1, 2, 1, 2, 8, 2, 1, 6, 22, 5, 2, 1, 14, 57, 12, 5, 2, 1, 34, 136, 28, 12, 5, 2, 1, 78, 315, 64, 28, 12, 5, 2, 1, 178, 710, 144, 64, 28, 12, 5, 2, 1, 398, 1577, 320, 144, 64, 28, 12, 5, 2, 1, 882, 3460, 704, 320, 144, 64, 28, 12, 5, 2, 1
OFFSET
1,5
COMMENTS
Its row sum is A221882.
REFERENCES
A. D. Adeshola, V. Maltcev and A. Umar, Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain, (submitted).
FORMULA
T(n,0) = T(n-1,1), T(n,1) = A059570(n) + A221876(n,1) - n and T(n,k) = A221876 if k > 1.
EXAMPLE
T (4,0) = 6 because there are exactly 6 order-preserving or order-reversing full contraction mappings (of a 4-chain) with no fixed point, namely: (2111), (3321), (3322), (4321), (4322), (4443).
Triangle:
1,
0, 1,
1, 2, 1,
2, 8, 2, 1,
6, 22, 5, 2, 1,
14, 57, 12, 5, 2, 1,
34, 136, 28, 12, 5, 2, 1,
78, 315, 64, 28, 12, 5, 2, 1,
178, 710, 144, 64, 28, 12, 5, 2, 1,
398, 1577, 320, 144, 64, 28, 12, 5, 2, 1,
882, 3460, 704, 320, 144, 64, 28, 12, 5, 2, 1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Abdullahi Umar, Feb 28 2013
STATUS
approved