OFFSET
1,2
COMMENTS
Row sum is A001792(n-1).
The matrix inverse starts
1;
-2,1;
-1,-2,1;
0,-1,-2,1;
1,0,-1,-2,1;
2,1,0,-1,-2,1;
3,2,1,0,-1,-2,1;
4,3,2,1,0,-1,-2,1;
5,4,3,2,1,0,-1,-2,1;
6,5,4,3,2,1,0,-1,-2,1;
7,6,5,4,3,2,1,0,-1,-2,1; - R. J. Mathar, Apr 12 2013
...
T(n,k) is also the total number of occurrences of parts k in all compositions (ordered partitions) of n, see example. The equivalent sequence for partitions is A066633. Omar E. Pol, Aug 26 2013
REFERENCES
A. D. Adeshola, V. Maltcev and A. Umar, Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain, (submitted 2013).
LINKS
A. D. Adeshola, V. Maltcev and A. Umar, Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain, arXiv:1303.7428 [math.CO], 2013.
FORMULA
T(n,n) = 1, T(n,k) = (n-k+3)*2^(n-k-2) for n>=2 and n > k > 0.
T(2*n+1,n+1) = T(n+1,1) = A045623(n) for n>=0.
T(n,k) = A045623(n-k), n>=1, 1<=k<=n. - Omar E. Pol, Sep 01 2013
EXAMPLE
T(5,3) = 5 because there are exactly 5 order-preserving full contraction mappings (of a 5-chain) with exactly 3 fixed points, namely: (12333), (12334), (22344), (23345), (33345).
Triangle begins:
1,
2, 1,
5, 2, 1,
12, 5, 2, 1,
28, 12, 5, 2, 1,
64, 28, 12, 5, 2, 1,
144, 64, 28, 12, 5, 2, 1,
320, 144, 64, 28, 12, 5, 2, 1,
704, 320, 144, 64, 28, 12, 5, 2, 1,
1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
...
Note that column k is column 1 shifted down by k positions.
Row 4 is [12, 5, 2, 1]: in the compositions of 4
[ 1] [ 1 1 1 1 ]
[ 2] [ 1 1 2 ]
[ 3] [ 1 2 1 ]
[ 4] [ 1 3 ]
[ 5] [ 2 1 1 ]
[ 6] [ 2 2 ]
[ 7] [ 3 1 ]
[ 8] [ 4 ]
there are 12 parts=1, 5 parts=2, 2 part=3, and 1 part=4.
- Joerg Arndt, Sep 01 2013
MATHEMATICA
T[n_, n_] = 1; T[n_, k_] := (n - k + 3)*2^(n - k - 2);
Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 21 2018 *)
CROSSREFS
KEYWORD
AUTHOR
Abdullahi Umar, Feb 28 2013
STATUS
approved