login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323953
Regular triangle read by rows where T(n, k) is the number of ways to split an n-cycle into singletons and connected subsequences of sizes > k.
6
1, 2, 1, 5, 2, 1, 12, 6, 2, 1, 27, 12, 7, 2, 1, 58, 23, 14, 8, 2, 1, 121, 44, 23, 16, 9, 2, 1, 248, 82, 38, 26, 18, 10, 2, 1, 503, 149, 65, 38, 29, 20, 11, 2, 1, 1014, 267, 112, 57, 42, 32, 22, 12, 2, 1, 2037, 475, 189, 90, 57, 46, 35, 24, 13, 2, 1
OFFSET
1,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
FORMULA
T(n,k) = 2 - n + Sum_{i=1..floor(n/k)} n*binomial(n-i*k+i-1, 2*i-1)/i for 1 <= k < n. - Andrew Howroyd, Jan 19 2023
EXAMPLE
Triangle begins:
1
2 1
5 2 1
12 6 2 1
27 12 7 2 1
58 23 14 8 2 1
121 44 23 16 9 2 1
248 82 38 26 18 10 2 1
503 149 65 38 29 20 11 2 1
1014 267 112 57 42 32 22 12 2 1
2037 475 189 90 57 46 35 24 13 2 1
4084 841 312 146 80 62 50 38 26 14 2 1
Row 4 counts the following connected partitions:
{{1234}} {{1234}} {{1234}} {{1}{2}{3}{4}}
{{1}{234}} {{1}{234}} {{1}{2}{3}{4}}
{{12}{34}} {{123}{4}}
{{123}{4}} {{124}{3}}
{{124}{3}} {{134}{2}}
{{134}{2}} {{1}{2}{3}{4}}
{{14}{23}}
{{1}{2}{34}}
{{1}{23}{4}}
{{12}{3}{4}}
{{14}{2}{3}}
{{1}{2}{3}{4}}
MATHEMATICA
cyceds[n_, k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i, j]-1, n], {i, n}, {j, Prepend[Range[i+k, n+i-1], i]}]];
spsu[_, {}]:={{}}; spsu[foo_, set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@spsu[Select[foo, Complement[#, Complement[set, s]]=={}&], Complement[set, s]]]/@Cases[foo, {i, ___}];
Table[Length[spsu[cyceds[n, k], Range[n]]], {n, 10}, {k, n}]
PROG
(PARI) T(n, k) = {1 + if(k<n, 1-n) + sum(i=1, n\k, n*binomial(n-i*k+i-1, 2*i-1)/i)} \\ Andrew Howroyd, Jan 19 2023
CROSSREFS
First column is A000325. Second column is A323950.
Sequence in context: A126125 A221876 A128514 * A126075 A134032 A137151
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Feb 10 2019
STATUS
approved