login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306351
Number of ways to split an n-cycle into connected subgraphs all having at least 4 vertices.
8
1, 0, 0, 0, 1, 1, 1, 1, 5, 10, 16, 23, 35, 53, 78, 111, 157, 222, 313, 438, 610, 848, 1178, 1634, 2263, 3131, 4330, 5986, 8272, 11427, 15782, 21794, 30093, 41548, 57359, 79183, 109307, 150887, 208279, 287496, 396838, 547761, 756077, 1043611, 1440488, 1988289
OFFSET
0,9
FORMULA
G.f.: (2*x^9-3*x^8+x^3-3*x^2+3*x-1)/((x^4+x-1)*(x-1)^2). - Alois P. Heinz, Feb 10 2019
EXAMPLE
The a(7) = 1 through a(9) = 10 partitions:
{{1234567}} {{12345678}} {{123456789}}
{{1234}{5678}} {{1234}{56789}}
{{1238}{4567}} {{12345}{6789}}
{{1278}{3456}} {{12349}{5678}}
{{1678}{2345}} {{12389}{4567}}
{{1239}{45678}}
{{12789}{3456}}
{{1289}{34567}}
{{16789}{2345}}
{{1789}{23456}}
MATHEMATICA
cycedsprop[n_, k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i, j]-1, n], {i, n}, {j, i+k, n+i-1}]];
spsu[_, {}]:={{}}; spsu[foo_, set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@spsu[Select[foo, Complement[#, Complement[set, s]]=={}&], Complement[set, s]]]/@Cases[foo, {i, ___}];
Table[Length[spsu[cycedsprop[n, 3], Range[n]]], {n, 15}]
CROSSREFS
Column k = 3 of A323954.
Sequence in context: A212455 A052905 A365701 * A215341 A345070 A194275
KEYWORD
nonn,easy
AUTHOR
Gus Wiseman, Feb 10 2019
EXTENSIONS
More terms from Alois P. Heinz, Feb 10 2019
STATUS
approved