login
A282885
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.
8
0, 0, 0, 1, 2, 1, 2, 8, 8, 2, 5, 32, 74, 32, 5, 12, 122, 430, 430, 122, 12, 26, 416, 2426, 3762, 2426, 416, 26, 56, 1414, 13062, 34314, 34314, 13062, 1414, 56, 118, 4626, 67676, 286920, 480995, 286920, 67676, 4626, 118, 244, 14930, 342972, 2342046, 6296324
OFFSET
1,5
COMMENTS
Table starts
...0.....0.......1..........2............5.............12...............26
...0.....2.......8.........32..........122............416.............1414
...1.....8......74........430.........2426..........13062............67676
...2....32.....430.......3762........34314.........286920..........2342046
...5...122....2426......34314.......480995........6296324.........80114311
..12...416...13062.....286920......6296324......128768496.......2561487246
..26..1414...67676....2342046.....80114311.....2561487246......79687436788
..56..4626..342972...18668994....995928444....49811090624....2422749969094
.118.14930.1707597..146171090..12166597450...951678283294...72384911847530
.244.47432.8384136.1129426388.146641882796.17942875499666.2134206947210504
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -3*a(n-4) -2*a(n-5) -a(n-6)
k=2: [order 10]
k=3: [order 22]
k=4: [order 42]
k=5: [order 86]
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..0. .0..1..0..1. .0..1..1..1. .1..0..1..1. .0..1..0..0
..1..0..1..1. .0..0..0..0. .0..0..0..0. .1..0..0..0. .0..0..0..1
..0..0..0..0. .0..0..1..0. .1..0..0..0. .0..1..1..1. .0..0..1..0
..1..1..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..1..0
CROSSREFS
Column 1 is A073778(n-1).
Sequence in context: A221878 A219109 A137305 * A242841 A143208 A353581
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 24 2017
STATUS
approved